AI-Driven Enterprise Systems for Secure Data Access Regulatory Compliance and Real-Time Decision Intelligence Using Cloud Computing

Main Article Content

Isak Henriksson Berglund

Abstract

The rapid adoption of cloud computing and artificial intelligence (AI) in enterprise environments has created new opportunities and challenges for secure data management, regulatory compliance, and real-time decision-making. Traditional enterprise systems often struggle to maintain data integrity, enforce compliance across multiple jurisdictions, and provide actionable insights in real time. This paper proposes an AI-driven enterprise system framework that leverages cloud computing to ensure secure data access, automate compliance processes, and enable real-time decision intelligence. The system integrates machine learning models for anomaly detection, predictive analytics, and decision optimization, all within a scalable cloud infrastructure. Experimental results demonstrate improved data security, faster regulatory reporting, and enhanced decision-making efficiency. The findings indicate that combining AI and cloud technologies can transform enterprise operations, ensuring both operational excellence and compliance in increasingly complex regulatory environments.

Article Details

Section

Articles

How to Cite

AI-Driven Enterprise Systems for Secure Data Access Regulatory Compliance and Real-Time Decision Intelligence Using Cloud Computing. (2025). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 8(6), 13136 - 13141. https://doi.org/10.15662/IJRPETM.2025.0806016

References

1. European Union. (2018). General Data Protection Regulation (GDPR). https://eur-lex.europa.eu/eli/reg/2016/679/oj

2. Tamizharasi, S., Rubini, P., Saravana Kumar, S., & Arockiam, D. Adapting federated learning-based AI models to dynamic cyberthreats in pervasive IoT environments.

3. Vimal Raja, G. (2022). Leveraging Machine Learning for Real-Time Short-Term Snowfall Forecasting Using MultiSource Atmospheric and Terrain Data Integration. International Journal of Multidisciplinary Research in Science, Engineering and Technology, 5(8), 1336-1339.

4. Lokeshkumar Madabathula, “AI- Driven Risk Management in Finance: Predictive Models for Market Volatility, International Journal of Information Technology and Management Information Systems 16 ( 2 ): 293–302.

5. U.S. Department of Health and Human Services. (2013). HIPAA privacy rule. https://www.hhs.gov/hipaa/for-professionals/privacy/index.html

6. Muthusamy, M. (2025). A Scalable Cloud-Enabled SAP-Centric AI/ML Framework for Healthcare Powered by NLP Processing and BERT-Driven Insights. International Journal of Computer Technology and Electronics Communication, 8(5), 11457-11462.

7. Ramakrishna, S. (2023). Cloud-Native AI Platform for Real-Time Resource Optimization in Governance-Driven Project and Network Operations. International Journal of Engineering & Extended Technologies Research (IJEETR), 5(2), 6282-6291.

8. Singh, A. (2025). Intent-Based Networking in Multi-Cloud Environments. Journal of Engineering and Applied Sciences Technology, 7(2), 1-7.

9. IBM. (2022). AI in enterprise systems: Transforming decision intelligence. IBM Corporation. https://www.ibm.com

10. Karnam, A. (2024). Engineering Trust at Scale: How Proactive Governance and Operational Health Reviews Achieved Zero Service Credits for Mission-Critical SAP Customers. International Journal of Humanities and Information Technology, 6(4), 60–67. https://doi.org/10.21590/ijhit.06.04.11

11. Amazon Web Services. (2021). Cloud security best practices. AWS. https://aws.amazon.com/security

12. Chivukula, V. (2024). The Role of Adstock and Saturation Curves in Marketing Mix Models: Implications for Accuracy and Decision-Making.. International Journal of Advanced Research in Computer Science & Technology (IJARCST), 7(2), 10002–10007.

13. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

14. Mahajan, N. (2025). GOVERNANCE OF CROSS-FUNCTIONAL DELIVERY IN SCALABLE MULTI-VENDOR AGILE TRANSFORMATIONS. International Journal of Applied Mathematics, 38(2s), 156-167.

15. Gartner. (2020). Predictive analytics and AI in cloud-enabled enterprises. Gartner Research. https://www.gartner.com

16. Adari, Vijay Kumar, “Interoperability and Data Modernization: Building a Connected Banking Ecosystem,” International Journal of Computer Engineering and Technology (IJCET), vol. 15, no. 6, pp.653-662, Nov-Dec 2024. DOI:https://doi.org/10.5281/zenodo.14219429.

17. Kumar, R. K. (2024). Real-time GenAI neural LDDR optimization on secure Apache–SAP HANA cloud for clinical and risk intelligence. IJEETR, 8737–8743. https://doi.org/10.15662/IJEETR.2024.0605006

18. Kumar, S. S. (2024). SAP-Based Digital Banking Architecture Using Azure AI and Deep Learning for Real-Time Healthcare Predictive Analytics. International Journal of Technology, Management and Humanities, 10(02), 77-88.

19. Sugumar, R. (2025). An Intelligent Cloud-Native GenAI Architecture for Project Risk Prediction and Secure Healthcare Fraud Analytics. International Journal of Research and Applied Innovations, 8(Special Issue 2), 1-7.

20. Nagarajan, G. (2023). AI-Integrated Cloud Security and Privacy Framework for Protecting Healthcare Network Information and Cross-Team Collaborative Processes. International Journal of Engineering & Extended Technologies Research (IJEETR), 5(2), 6292-6297.

21. Poornima, G., & Anand, L. (2024, May). Novel AI Multimodal Approach for Combating Against Pulmonary Carcinoma. In 2024 5th International Conference for Emerging Technology (INCET) (pp. 1-6). IEEE.

22. Gunaseelan, N., Paul, D., & Soundarapandiyan, R. (2024). Deploying LLMs for Insurance Underwriting and Claims Processing: A Comprehensive Guide to Training, Model Validation, and Regulatory Compliance. Australian J Machine Learning Research & Applications, 4(1), 226-63.

23. Meka, S. (2022). Engineering Insurance Portals of the Future: Modernizing Core Systems for Performance and Scalability. International Journal of Computer Science and Information Technology Research, 3(1), 180-198.

24. Akter Tohfa, N., Alim, M. A., Arif, M. H., Rahman, M. R., Rahman, M., Rasul, I., & Hossen, M. S. (2025). Machine learning–enabled anomaly detection for environmental risk management in banking. World Journal of Advanced Research and Reviews, 28(3), 1674–1682. https://doi.org/10.30574/wjarr.2025.28.3.4259

25. Oracle. (2021). Automating compliance with AI and cloud technologies. Oracle Corporation. https://www.oracle.com

26. Kasireddy, J. R. (2023). A systematic framework for experiment tracking and model promotion in enterprise MLOps using MLflow and Databricks. International Journal of Research and Applied Innovations, 6(1), 8306–8315. https://doi.org/10.15662/IJRAI.2023.0601006

27. Md Manarat Uddin, M., Sakhawat Hussain, T., & Rahanuma, T. (2025). Developing AI-Powered Credit Scoring Models Leveraging Alternative Data for Financially Underserved US Small Businesses. International Journal of Informatics and Data Science Research, 2(10), 58-86.

28. Rajurkar, P. (2021). Deep Learning Models for Predicting Effluent Quality Under Variable Industrial Load Conditions. International Journal of Research and Applied Innovations, 4(5), 5826-5832.

29. Vasugi, T. (2022). AI-Optimized Multi-Cloud Resource Management Architecture for Secure Banking and Network Environments. International Journal of Research and Applied Innovations, 5(4), 7368-7376.

30. Sharma, A., Kabade, S., & Kagalkar, A. (2024). AI-Driven and Cloud-Enabled System for Automated Reconciliation and Regulatory Compliance in Pension Fund Management. International Journal of Emerging Research in Engineering and Technology, 5(2), 65-73.

31. Poornima, G., & Anand, L. (2024, April). Effective Machine Learning Methods for the Detection of Pulmonary Carcinoma. In 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM) (pp. 1-7). IEEE.

32. Binu, C. T., Kumar, S. S., Rubini, P., & Sudhakar, K. (2024). Enhancing Cloud Security through Machine Learning-Based Threat Prevention and Monitoring: The Development and Evaluation of the PBPM Framework. https://www.researchgate.net/profile/Binu-C-T/publication/383037713_Enhancing_Cloud_Security_through_Machine_Learning-Based_Threat_Prevention_and_Monitoring_The_Development_and_Evaluation_of_the_PBPM_Framework/links/66b99cfb299c327096c1774a/Enhancing-Cloud-Security-through-Machine-Learning-Based-Threat-Prevention-and-Monitoring-The-Development-and-Evaluation-of-the-PBPM-Framework.pdf

33. Natta P K. AI-Driven Decision Intelligence: Optimizing Enterprise Strategy with AI-Augmented Insights[J]. Journal of Computer Science and Technology Studies, 2025, 7(2): 146-152.

34. Thumala, S. R., Madathala, H., & Sharma, S. (2025, March). Towards Sustainable Cloud Computing: Innovations in Energy-Efficient Resource Allocation. In 2025 International Conference on Machine Learning and Autonomous Systems (ICMLAS) (pp. 1528-1533). IEEE.

35. Marr, B. (2019). Artificial intelligence in practice: How 50 successful companies used AI and machine learning. Wiley.