AI-Driven Enterprise Systems for Secure Data Access Regulatory Compliance and Real-Time Decision Intelligence Using Cloud Computing
Main Article Content
Abstract
Article Details
Section
How to Cite
References
1. European Union. (2018). General Data Protection Regulation (GDPR). https://eur-lex.europa.eu/eli/reg/2016/679/oj
2. Tamizharasi, S., Rubini, P., Saravana Kumar, S., & Arockiam, D. Adapting federated learning-based AI models to dynamic cyberthreats in pervasive IoT environments.
3. Vimal Raja, G. (2022). Leveraging Machine Learning for Real-Time Short-Term Snowfall Forecasting Using MultiSource Atmospheric and Terrain Data Integration. International Journal of Multidisciplinary Research in Science, Engineering and Technology, 5(8), 1336-1339.
4. Lokeshkumar Madabathula, “AI- Driven Risk Management in Finance: Predictive Models for Market Volatility, International Journal of Information Technology and Management Information Systems 16 ( 2 ): 293–302.
5. U.S. Department of Health and Human Services. (2013). HIPAA privacy rule. https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
6. Muthusamy, M. (2025). A Scalable Cloud-Enabled SAP-Centric AI/ML Framework for Healthcare Powered by NLP Processing and BERT-Driven Insights. International Journal of Computer Technology and Electronics Communication, 8(5), 11457-11462.
7. Ramakrishna, S. (2023). Cloud-Native AI Platform for Real-Time Resource Optimization in Governance-Driven Project and Network Operations. International Journal of Engineering & Extended Technologies Research (IJEETR), 5(2), 6282-6291.
8. Singh, A. (2025). Intent-Based Networking in Multi-Cloud Environments. Journal of Engineering and Applied Sciences Technology, 7(2), 1-7.
9. IBM. (2022). AI in enterprise systems: Transforming decision intelligence. IBM Corporation. https://www.ibm.com
10. Karnam, A. (2024). Engineering Trust at Scale: How Proactive Governance and Operational Health Reviews Achieved Zero Service Credits for Mission-Critical SAP Customers. International Journal of Humanities and Information Technology, 6(4), 60–67. https://doi.org/10.21590/ijhit.06.04.11
11. Amazon Web Services. (2021). Cloud security best practices. AWS. https://aws.amazon.com/security
12. Chivukula, V. (2024). The Role of Adstock and Saturation Curves in Marketing Mix Models: Implications for Accuracy and Decision-Making.. International Journal of Advanced Research in Computer Science & Technology (IJARCST), 7(2), 10002–10007.
13. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
14. Mahajan, N. (2025). GOVERNANCE OF CROSS-FUNCTIONAL DELIVERY IN SCALABLE MULTI-VENDOR AGILE TRANSFORMATIONS. International Journal of Applied Mathematics, 38(2s), 156-167.
15. Gartner. (2020). Predictive analytics and AI in cloud-enabled enterprises. Gartner Research. https://www.gartner.com
16. Adari, Vijay Kumar, “Interoperability and Data Modernization: Building a Connected Banking Ecosystem,” International Journal of Computer Engineering and Technology (IJCET), vol. 15, no. 6, pp.653-662, Nov-Dec 2024. DOI:https://doi.org/10.5281/zenodo.14219429.
17. Kumar, R. K. (2024). Real-time GenAI neural LDDR optimization on secure Apache–SAP HANA cloud for clinical and risk intelligence. IJEETR, 8737–8743. https://doi.org/10.15662/IJEETR.2024.0605006
18. Kumar, S. S. (2024). SAP-Based Digital Banking Architecture Using Azure AI and Deep Learning for Real-Time Healthcare Predictive Analytics. International Journal of Technology, Management and Humanities, 10(02), 77-88.
19. Sugumar, R. (2025). An Intelligent Cloud-Native GenAI Architecture for Project Risk Prediction and Secure Healthcare Fraud Analytics. International Journal of Research and Applied Innovations, 8(Special Issue 2), 1-7.
20. Nagarajan, G. (2023). AI-Integrated Cloud Security and Privacy Framework for Protecting Healthcare Network Information and Cross-Team Collaborative Processes. International Journal of Engineering & Extended Technologies Research (IJEETR), 5(2), 6292-6297.
21. Poornima, G., & Anand, L. (2024, May). Novel AI Multimodal Approach for Combating Against Pulmonary Carcinoma. In 2024 5th International Conference for Emerging Technology (INCET) (pp. 1-6). IEEE.
22. Gunaseelan, N., Paul, D., & Soundarapandiyan, R. (2024). Deploying LLMs for Insurance Underwriting and Claims Processing: A Comprehensive Guide to Training, Model Validation, and Regulatory Compliance. Australian J Machine Learning Research & Applications, 4(1), 226-63.
23. Meka, S. (2022). Engineering Insurance Portals of the Future: Modernizing Core Systems for Performance and Scalability. International Journal of Computer Science and Information Technology Research, 3(1), 180-198.
24. Akter Tohfa, N., Alim, M. A., Arif, M. H., Rahman, M. R., Rahman, M., Rasul, I., & Hossen, M. S. (2025). Machine learning–enabled anomaly detection for environmental risk management in banking. World Journal of Advanced Research and Reviews, 28(3), 1674–1682. https://doi.org/10.30574/wjarr.2025.28.3.4259
25. Oracle. (2021). Automating compliance with AI and cloud technologies. Oracle Corporation. https://www.oracle.com
26. Kasireddy, J. R. (2023). A systematic framework for experiment tracking and model promotion in enterprise MLOps using MLflow and Databricks. International Journal of Research and Applied Innovations, 6(1), 8306–8315. https://doi.org/10.15662/IJRAI.2023.0601006
27. Md Manarat Uddin, M., Sakhawat Hussain, T., & Rahanuma, T. (2025). Developing AI-Powered Credit Scoring Models Leveraging Alternative Data for Financially Underserved US Small Businesses. International Journal of Informatics and Data Science Research, 2(10), 58-86.
28. Rajurkar, P. (2021). Deep Learning Models for Predicting Effluent Quality Under Variable Industrial Load Conditions. International Journal of Research and Applied Innovations, 4(5), 5826-5832.
29. Vasugi, T. (2022). AI-Optimized Multi-Cloud Resource Management Architecture for Secure Banking and Network Environments. International Journal of Research and Applied Innovations, 5(4), 7368-7376.
30. Sharma, A., Kabade, S., & Kagalkar, A. (2024). AI-Driven and Cloud-Enabled System for Automated Reconciliation and Regulatory Compliance in Pension Fund Management. International Journal of Emerging Research in Engineering and Technology, 5(2), 65-73.
31. Poornima, G., & Anand, L. (2024, April). Effective Machine Learning Methods for the Detection of Pulmonary Carcinoma. In 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM) (pp. 1-7). IEEE.
32. Binu, C. T., Kumar, S. S., Rubini, P., & Sudhakar, K. (2024). Enhancing Cloud Security through Machine Learning-Based Threat Prevention and Monitoring: The Development and Evaluation of the PBPM Framework. https://www.researchgate.net/profile/Binu-C-T/publication/383037713_Enhancing_Cloud_Security_through_Machine_Learning-Based_Threat_Prevention_and_Monitoring_The_Development_and_Evaluation_of_the_PBPM_Framework/links/66b99cfb299c327096c1774a/Enhancing-Cloud-Security-through-Machine-Learning-Based-Threat-Prevention-and-Monitoring-The-Development-and-Evaluation-of-the-PBPM-Framework.pdf
33. Natta P K. AI-Driven Decision Intelligence: Optimizing Enterprise Strategy with AI-Augmented Insights[J]. Journal of Computer Science and Technology Studies, 2025, 7(2): 146-152.
34. Thumala, S. R., Madathala, H., & Sharma, S. (2025, March). Towards Sustainable Cloud Computing: Innovations in Energy-Efficient Resource Allocation. In 2025 International Conference on Machine Learning and Autonomous Systems (ICMLAS) (pp. 1528-1533). IEEE.
35. Marr, B. (2019). Artificial intelligence in practice: How 50 successful companies used AI and machine learning. Wiley.