Enterprise Data Modernization using Cloud-Native Architectures and Automation

Main Article Content

Suseelkousic Gogineni
Vijayasai Madamanchi
Venkata Makineni

Abstract

Enterprise data platforms are rapidly evolving as organizations transition from legacy, monolithic systems to cloud-native architectures. Traditional ETL-driven platforms struggle to meet modern enterprise requirements such as elastic scalability, automation, real-time availability, and regulatory compliance. This paper presents an end-to-end framework for enterprise data modernization using cloud-native architectures and automation. The proposed model integrates distributed data processing, workflow orchestration, infrastructure as code, monitoring, and compliance-by-design principles. Through architectural analysis, implementation patterns, and enterprise case scenarios, this study demonstrates how automation-driven data platforms improve operational efficiency, reduce compliance risk, and enable scalable analytics across regulated industries.

Article Details

Section

Articles

How to Cite

Enterprise Data Modernization using Cloud-Native Architectures and Automation . (2025). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 8(6), 13124-13126. https://doi.org/10.15662/IJRPETM.2025.0806014

References

[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting”, in Proc. SIGGRAPH, pp. 417–424, 2000.

[2] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object removal by exemplar-based image inpainting.”, IEEE Transactions on Image Processing, vol. 13, no.9, pp. 1200–1212, 2004.

[3] Marcelo Bertalmio, Luminita Vese, Guillermo Sapiro, Stanley Osher, “Simultaneous Structure and Texture Image Inpainting”, IEEE Transactions On Image Processing, vol. 12, No. 8, 2003.

[4] Yassin M. Y. Hasan and Lina J. Karam, “Morphological Text Extraction from Images”, IEEE Transactions On Image Processing, vol. 9, No. 11, 2000

[5] Eftychios A. Pnevmatikakis, Petros Maragos “An Inpainting System For Automatic Image Structure-Texture Restoration With Text Removal”, IEEE trans. 978-1-4244-1764, 2008

[6] S.Bhuvaneswari, T.S.Subashini, “Automatic Detection and Inpainting of Text Images”, International Journal of Computer Applications (0975 – 8887) Volume 61– No.7, 2013

[7] Aria Pezeshk and Richard L. Tutwiler, “Automatic Feature Extraction and Text Recognition from Scanned Topographic Maps”, IEEE Transactions on geosciences and remote sensing, VOL. 49, NO. 12, 2011

[8] Xiaoqing Liu and Jagath Samarabandu, “Multiscale Edge-Based Text Extraction From Complex Images”, IEEE Trans., 1424403677, 2006

[9] Nobuo Ezaki, Marius Bulacu Lambert , Schomaker , “Text Detection from Natural Scene Images: Towards a System for Visually Impaired Persons” , Proc. of 17th Int. Conf. on Pattern Recognition (ICPR), IEEE Computer Society, pp. 683-686, vol. II, 2004

[10] Mr. Rajesh H. Davda1, Mr. Noor Mohammed, “ Text Detection, Removal and Region Filling Using Image Inpainting”, International Journal of Futuristic Science Engineering and Technology, vol. 1 Issue 2, ISSN 2320 – 4486, 2013

[11] Uday Modha, Preeti Dave, “ Image Inpainting-Automatic Detection and Removal of Text From Images”, International Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622 Vol. 2, Issue 2, 2012

[12] Muthukumar S, Dr.Krishnan .N, Pasupathi.P, Deepa. S, “Analysis of Image Inpainting Techniques with Exemplar, Poisson, Successive Elimination and 8 Pixel Neighborhood Methods”, International Journal of Computer Applications (0975 – 8887), Volume 9, No.11, 2010