Platform Engineering for Intelligent Cloud-Native Enterprises with AI and ML Pipelines along with Continuous Integration Security and Performance Analytics

Main Article Content

David Mattias Blomqvist

Abstract

The rapid evolution of enterprise applications necessitates robust and intelligent cloud-native platforms that can seamlessly integrate artificial intelligence (AI) and machine learning (ML) pipelines while ensuring continuous integration, security, and performance optimization. Traditional monolithic architectures often fail to meet the scalability, agility, and reliability requirements of modern enterprises. This paper presents a comprehensive framework for platform engineering in cloud-native enterprises, emphasizing modular architecture, containerization, microservices orchestration, and automated CI/CD pipelines. The framework integrates secure AI/ML pipelines, performance monitoring, and predictive analytics to support real-time decision-making across business domains. Emphasis is placed on security mechanisms, including identity and access management, encryption, and compliance adherence, ensuring data integrity and privacy. We also discuss methods for performance analytics, enabling enterprises to detect bottlenecks, optimize resource utilization, and maintain service-level objectives. Case scenarios in healthcare, finance, and insurance illustrate the applicability of the framework. The findings demonstrate that intelligent platform engineering not only enhances operational efficiency but also accelerates innovation by facilitating rapid deployment, continuous learning, and system observability. This study contributes a unified approach to designing secure, scalable, and performance-optimized cloud-native enterprise platforms empowered by AI and ML capabilities.

Article Details

Section

Articles

How to Cite

Platform Engineering for Intelligent Cloud-Native Enterprises with AI and ML Pipelines along with Continuous Integration Security and Performance Analytics. (2024). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(4), 10844-10850. https://doi.org/10.15662/IJRPETM.2024.0704004

References

1. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg, Omega, and Kubernetes. ACM Queue, 14(1), 70–93.

2. Sugumar, R. (2016). Conditional Entropy with Swarm Optimization Approach for Privacy Preservation of Datasets in Cloud.

3. Adari, V. K. (2020). Intelligent Care at Scale AI-Powered Operations Transforming Hospital Efficiency. International Journal of Engineering & Extended Technologies Research (IJEETR), 2(3), 1240-1249.

4. Rajurkar, P. (2021). Deep Learning Models for Predicting Effluent Quality Under Variable Industrial Load Conditions. International Journal of Research and Applied Innovations, 4(5), 5826-5832.

5. Dean, J., & Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2), 74–80.

6. Nagarajan, G. (2022). Advanced AI–Cloud Neural Network Systems with Intelligent Caching for Predictive Analytics and Risk Mitigation in Project Management. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 5(6), 7774-7781.

7. Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3), 50–60.

8. Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing. National Institute of Standards and Technology.

9. Vijayaboopathy, V., Kalyanasundaram, P. D., & Surampudi, Y. (2022). Optimizing Cloud Resources through Automated Frameworks: Impact on Large-Scale Technology Projects. Los Angeles Journal of Intelligent Systems and Pattern Recognition, 2, 168-203.

10. Navandar, P. (2021). Developing advanced fraud prevention techniques using data analytics and ERP systems. International Journal of Science and Research (IJSR), 10(5), 1326–1329. https://dx.doi.org/10.21275/SR24418104835 https://www.researchgate.net/profile/Pavan-Navandar/publication/386507190_Developing_Advanced_Fraud_Prevention_Techniquesusing_Data_Analytics_and_ERP_Systems/links/675a0ecc138b414414d67c3c/Developing-Advanced-Fraud-Prevention-Techniquesusing-Data-Analytics-and-ERP-Systems.pdf

11. Uddandarao, D. P., & Vadlamani, R. K. (2025). Counterfactual Forecasting of Human Behavior using Generative AI and Causal Graphs. arXiv preprint arXiv:2511.07484.

12. Meka, S. (2022). Streamlining Financial Operations: Developing Multi-Interface Contract Transfer Systems for Efficiency and Security. International Journal of Computer Technology and Electronics Communication, 5(2), 4821-4829.

13. Kumar, R., Al-Turjman, F., Anand, L., Kumar, A., Magesh, S., Vengatesan, K., ... & Rajesh, M. (2021). Genomic sequence analysis of lung infections using artificial intelligence technique. Interdisciplinary Sciences: Computational Life Sciences, 13(2), 192-200.

14. Chandra Sekhar Oleti. (2022). Serverless Intelligence: Securing J2ee-Based Federated Learning Pipelines on AWS. International Journal of Computer Engineering and Technology (IJCET), 13(3), 163-180. https://iaeme.com/MasterAdmin/Journal_uploa ds/IJCET/VOLUME_13_ISSUE_3/IJCET_13_03 _017.pdf

15. Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569.

16. HV, M. S., & Kumar, S. S. (2024). Fusion Based Depression Detection through Artificial Intelligence using Electroencephalogram (EEG). Fusion: Practice & Applications, 14(2).

17. Richter, A., Sinkovics, N., Ringle, C. M., & Schlägel, C. (2017). Predictive Analytics in Insurance: A Review. European Journal of Operational Research, 263(3), 666–679.

18. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604.

19. Paul, D., Namperumal, G. and Selvaraj, A., 2022. Cloud-Native AI/ML Pipelines: Best Practices for Continuous Integration, Deployment, and Monitoring in Enterprise Applications. Journal of Artificial Intelligence Research, 2(1), pp.176-231.

20. Kumar, R. K. (2023). AI‑integrated cloud‑native management model for security‑focused banking and network transformation projects. International Journal of Research Publications in Engineering, Technology and Management, 6(5), 9321–9329. https://doi.org/10.15662/IJRPETM.2023.0605006

21. Vimal Raja, G. (2024). Intelligent Data Transition in Automotive Manufacturing Systems Using Machine Learning. International Journal of Multidisciplinary and Scientific Emerging Research, 12(2), 515-518.

22. Sharma, A., & Kabade, S. (2022). Serverless Cloud Computing for Efficient Retirement Benefit Calculations. Available at SSRN 5396995.

23. Sudhakara Reddy Peram, Praveen Kumar Kanumarlapudi, Sridhar Reddy Kakulavaram. (2023). Cypress Performance Insights: Predicting UI Test Execution Time Using Complexity Metrics. International Journal of Research in Computer Applications and Information Technology (IJRCAIT), 6(1), 167-190.

24. Gujjala, Praveen Kumar Reddy. (2023). Autonomous Healthcare Diagnostics : A MultiModal AI Framework Using AWS SageMaker, Lambda, and Deep Learning Orchestration for Real-Time Medical Image Analysis. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 760-772. 10.32628/CSEIT23564527.

25. Christadoss, J., Yakkanti, B., & Kunju, S. S. (2023). Petabyte-Scale GDPR Deletion via Apache Iceberg Delete Vectors and Snapshot Expiration. European Journal of Quantum Computing and Intelligent Agents, 7, 66-100.

26. Rahman, T., Islam, M. M., Zerine, I., Pranto, M. R. H., & Akter, M. (2023). Artificial Intelligence and Business Analytics for Sustainable Tourism: Enhancing Environmental and Economic Resilience in the US Industry. Journal of Primeasia, 4(1), 1-12.

27. Adari, V. K., Chunduru, V. K., Gonepally, S., Amuda, K. K., & Kumbum, P. K. (2023). Ethical analysis and decision-making framework for marketing communications: A weighted product model approach. Data Analytics and Artificial Intelligence, 3 (5), 44–53.

28. Sudhan, S. K. H. H., & Kumar, S. S. (2016). Gallant Use of Cloud by a Novel Framework of Encrypted Biometric Authentication and Multi Level Data Protection. Indian Journal of Science and Technology, 9, 44.

29. Vasugi, T. (2022). AI-Optimized Multi-Cloud Resource Management Architecture for Secure Banking and Network Environments. International Journal of Research and Applied Innovations, 5(4), 7368-7376.

30. Sasidevi, J., Sugumar, R., & Priya, P. S. (2017). A Cost-Effective Privacy Preserving Using Anonymization Based Hybrid Bat Algorithm With Simulated Annealing Approach For Intermediate Data Sets Over Cloud Computing. International Journal of Computational Research and Development, 2(2), 173-181.

31. Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning: Concept and Applications. ACM Transactions on Intelligent Systems and Technology, 10(2), Article 12.