Fortifying Core Services: Implementing ABA Scopes to Secure Revenue Attribution Pipelines

Main Article Content

Sirisha Meka

Abstract

The dominant paradigm in high-throughput distributed systems prioritizes infrastructural resilience over the semantic integrity of the data payload, leaving critical processes like revenue attribution vulnerable to systemic ambiguity. This vulnerability stems from a foundational bifurcation in both the literature and practice, which has separated infrastructure engineering from abstract security policy and language-level verification, resulting in API contracts that are merely descriptive suggestions rather than enforceable covenants. To bridge this chasm, this study introduces and evaluates the Annotation-Based Authentication (ABA) Scopes framework, a methodological corrective that embeds policy directly into core services as compliable artifacts. Implemented within a production environment of mission-critical Scala services, this approach precipitated a fundamental shift in data integrity, reducing unattributed revenue events by over 98% while incurring negligible performance overhead. The findings demonstrate that transforming the API contract from a static document into a machine-enforced, runtime-verified component imposes necessary socio-technical clarity, shifting the security posture from post-hoc forensic analysis to intrinsic, preventive verification. Ultimately, this work argues for a return to foundational design-by-contract principles, proposing a generalizable model for building provably trustworthy systems not by fortifying external perimeters, but by instantiating data whose integrity is an immutable, verifiable property from its point of origin.

Article Details

Section

Articles

How to Cite

Fortifying Core Services: Implementing ABA Scopes to Secure Revenue Attribution Pipelines. (2025). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 8(2), 11794-11801. https://doi.org/10.15662/by4kj175

References

1. Wang, G., Chen, L., Dikshit, A., Gustafson, J., Chen, B., Sax, M., Roesler, J., Blee-Goldman, S., Cadonna, B., Mehta, A., Madan, V., & Rao, J. (2021). Consistency and Completeness: Rethinking Distributed Stream Processing in Apache Kafka. Proceedings of the ACM/SIGMOD International Conference on Management of Data, 1515–1528. https://doi.org/10.1145/3448016.3457556

2. Xu, J., Yin, J., Zhu, H., & Xiao, L. (2023). Formalization and verification of Kafka messaging mechanism using CSP. Computer Science and Information Systems, 20(2), 643–668. https://doi.org/10.2298/csis210707057x

3. Samantha, S. K., Ahmed, S., Imtiaz, S., Rajan, H., & Leavens, G. (2023). What kinds of contracts do ML APIs need? Software Quality Journal. https://doi.org/10.1007/s10664-023-10320-z

4. Amin, N., & Tate, R. (2016). Java and scala's type systems are unsound: the existential crisis of null pointers. Proceedings of the ACM on Programming Languages, 1(OOPSLA), 126–141. https://doi.org/10.1145/2983990.2984004

5. Brachthäuser, J., Schuster, P., & Ostermann, K. (2020). Effekt: Capability-passing style for type- and effect-safe, extensible effect handlers in Scala. Journal of Functional Programming, 30. https://doi.org/10.1017/S0956796820000027

6. Akinbolaji, T., Nzeako, G., Akokodaripon, D., Aderoju, A. V., & Shittu, R. A. (2023). Enhancing fault tolerance and scalability in multi-region Kafka clusters for high-demand cloud platforms. World Journal of Advanced Research and Reviews, 18(1), 164–173. https://doi.org/10.30574/wjarr.2023.18.1.0629

7. Erigha, E. D., Obuse, E., Okare, B. P., Uzoka, A. C., Owoade, S., & Ayanbode, N. (2021). Managing API Contracts and Versioning Across Distributed Engineering Teams in Agile Software Development Pipelines. International Journal of Multidisciplinary Educational Research, 2(2), 28–40. https://doi.org/10.54660/ijmer.2021.2.2.28-40

8. Odersky, M., Boruch-Gruszecki, A., Brachthäuser, J., Lee, E., & Lhoták, O. (2021). Safer exceptions for Scala. Proceedings of the ACM on Programming Languages, 5(ICFP), 1–28. https://doi.org/10.1145/3486610.3486893

9. Giarrusso, P. G., Stefanesco, L., Timany, A., Birkedal, L., & Krebbers, R. (2020). Scala step-by-step: soundness for DOT with step-indexed logical relations in Iris. Proceedings of the ACM on Programming Languages, 4(POPL), 1–32. https://doi.org/10.1145/3408996

10. Taranov, K., Byan, S., Marathe, V. J., & Hoefler, T. (2022). KafkaDirect: Zero-copy Data Access for Apache Kafka over RDMA Networks. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1827–1840. https://doi.org/10.1145/3514221.3526056

11. Koyya, K. M. (2021). Scalable Architectural Pattern for Integrating Syslog Servers with Splunk. International Journal of Recent Technology and Engineering, 10(2), 173–177. https://doi.org/10.35940/ijrte.b6307.0710221

12. Viana, T. (2013). A Catalog of Bad Smells in Design-by-Contract Methodologies with Java Modeling Language. Journal of Computer Science and Engineering, 7(4), 251–266. https://doi.org/10.5626/JCSE.2013.7.4.251

13. Plösch, R. (1998). Tool Support for Design by Contract. Proceedings of TOOLS 27, 226–235. https://doi.org/10.1109/TOOLS.1998.711020

14. Cledou, G., Edixhoven, L., Jongmans, S., & Proença, J. (2022). API Generation for Multiparty Session Types, Revisited and Revised Using Scala 3 (Artifact). Dagstuhl Artifacts Series, 8(2), 19:1–19:4. https://doi.org/10.4230/DARTS.8.2.19

15. Raptis, T. P., & Passarella, A. (2023). A Survey on Networked Data Streaming With Apache Kafka. IEEE Access, 11, 84318–84344. https://doi.org/10.1109/ACCESS.2023.3303810

16. Raptis, T. P., & Passarella, A. (2022). On Efficiently Partitioning a Topic in Apache Kafka. International Conference on Information Technology & Systems, 111–120. https://doi.org/10.1109/CITS55221.2022.9832981

17. Vyas, S., Tyagi, R., Jain, C., & Sahu, S. (2022). Performance Evaluation of Apache Kafka – A Modern Platform for Real Time Data Streaming. IEEE International Conference on Innovative Computing, Information and Communication Technology (ICIPTM), 1–6. https://doi.org/10.1109/iciptm54933.2022.9754154

18. Selvaganesh, M., Karthi, P., Kumar, V. A. N., Moorthy, S., & Student, U. (2022). Efficient Brute-force handling methodology using Indexed-Cluster Architecture of Splunk. International Conference on Electrical, Electronics, Automation, and Renewable Energy (ICEARS), 1–6. https://doi.org/10.1109/ICEARS53579.2022.9752323

19. Hristov, M., Nenova, M., Iliev, G., & Avresky, D. (2021). Integration of Splunk Enterprise SIEM for DDoS Attack Detection in IoT. IEEE International Conference on Network and Cloud Applications (NCA), 126–133. https://doi.org/10.1109/nca53618.2021.9685977

20. Horkoff, J., Lindman, J., Hammouda, I., & Knauss, E. (2019). Strategic API Analysis and Planning: APIS Technical Report. arXiv preprint arXiv:1911.01235. https://www.semanticscholar.org/paper/195eaa5ab0659d8b0bcf230e606c1c6395779195

21. Nieto, A., Zhao, Y., Lhoták, O., Chang, A., & Pu, J. (2019). Scala with Explicit Nulls. Leibniz International Proceedings in Informatics (LIPIcs), 166(ECOOP 2020), 25:1–25:28. https://doi.org/10.4230/LIPIcs.ECOOP.2020.25