Transformer-Augmented AI Framework for ERP-Integrated Cloud Security Multi-Factor Authentication, Multivariate Classification, and Real-Time Threat Detection

Main Article Content

Anders Olof Håkansson Nyberg

Abstract

Cloud and enterprise resource planning (ERP) systems are increasingly targeted by sophisticated cyber threats. This study presents a transformer-augmented AI framework designed to enhance cloud security while integrating ERP systems. The framework leverages multi-factor authentication (MFA) for secure access control, multivariate classification models for real-time threat detection, and transformer-based algorithms for intelligent decision-making. By combining deep learning techniques with ERP-integrated cloud infrastructure, the proposed system ensures scalable and adaptive security while minimizing response latency. Experimental evaluations demonstrate the framework’s effectiveness in identifying and mitigating threats across complex cloud-ERP environments, providing a robust solution for organizations seeking proactive cybersecurity measures.

Article Details

Section

Articles

How to Cite

Transformer-Augmented AI Framework for ERP-Integrated Cloud Security Multi-Factor Authentication, Multivariate Classification, and Real-Time Threat Detection. (2021). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 4(5), 5588-5594. https://doi.org/10.15662/IJRPETM.2021.0405005

References

1. Navandar, P. (2018). Enhancing cybersecurity in airline operations through ERP integration: A comprehensive approach. Journal of Scientific and Engineering Research, 5(4), 457–462.

2. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2020). Applying design methodology to software development using WPM method. Journal ofComputer Science Applications and Information Technology, 5(1), 1-8.

3. Sudhan, S. K. H. H., & Kumar, S. S. (2015). An innovative proposal for secure cloud authentication using encrypted biometric authentication scheme. Indian journal of science and technology, 8(35), 1-5.

4. Thangavelu, K., Sethuraman, S., & Hasenkhan, F. (2021). AI-Driven Network Security in Financial Markets: Ensuring 100% Uptime for Stock Exchange Transactions. American Journal of Autonomous Systems and Robotics Engineering, 1, 100-130.

5. Kumar, R., Al-Turjman, F., Anand, L., Kumar, A., Magesh, S., Vengatesan, K., ... & Rajesh, M. (2021). Genomic sequence analysis of lung infections using artificial intelligence technique. Interdisciplinary Sciences: Computational Life Sciences, 13(2), 192-200.

6. Arora, A. (2019). Securing multi-cloud architectures using advanced cloud security management tools. International Journal of Research in Electronics and Computer Engineering, 7(2).

7. Hardial Singh. (2018). The role of multi-factor authentication and encryption in securing data access of cloud resources in a multitenant environment. The Research Journal (TRJ), 4(4–5).

8. Vijayaboopathy, V., Ananthakrishnan, V., & Mohammed, A. S. (2020). Transformer-Based Auto-Tuner for PL/SQL and Shell Scripts. Journal of Artificial Intelligence & Machine Learning Studies, 4, 39-70.

9. Popović, K., & Hocenski, Ž. (2010). Cloud computing security issues and challenges. In Proceedings of the 33rd International Convention MIPRO (pp. 344–349). IEEE.

10. Tang, Y., Sandhu, R., & Park, J. (2008). PKI-based security for cloud computing. In Proceedings of the 7th IEEE International Conference on Collaborative Computing (pp. 1–7). IEEE.

11. Stallings, W. (2017). Network security essentials: Applications and standards (6th ed.). Pearson.

12. Hinton, G., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647

13. Jain, A. K., Ross, A., & Nandakumar, K. (2011). Introduction to biometrics. Springer.

14. Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Prentice Hall.

15. Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. McGraw-Hill.

16. Kapadia, V., Jensen, J., McBride, G., Sundaramoothy, J., Deshmukh, R., Sacheti, P., & Althati, C. (2015). U.S. Patent No. 8,965,820. Washington, DC: U.S. Patent and Trademark Office.

17. Sudhan, S. K. H. H., & Kumar, S. S. (2015). An innovative proposal for secure cloud authentication using encrypted biometric authentication scheme. Indian Journal of Science and Technology, 8(35), 1–5.

18. Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (NIST Special Publication 800-145). National Institute of Standards and Technology.

19. Konidena, B. K., Bairi, A. R., & Pichaimani, T. (2021). Reinforcement Learning-Driven Adaptive Test Case Generation in Agile Development. American Journal of Data Science and Artificial Intelligence Innovations, 1, 241-273.

20. Anand, L., & Neelanarayanan, V. (2019). Feature Selection for Liver Disease using Particle Swarm Optimization Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 6434-6439.

21. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.

22. Sudhan, S. K. H. H., & Kumar, S. S. (2016). Gallant Use of Cloud by a Novel Framework of Encrypted Biometric Authentication and Multi Level Data Protection. Indian Journal of Science and Technology, 9, 44.

23. National Institute of Standards and Technology. (2017). Digital identity guidelines (NIST SP 800-63-3). U.S. Department of Commerce.