LLM-Augmented Cloud AI and Quantum Computing for Next-Generation Healthcare SAP Integration and Lakehouse-Driven Secure Maintenance Systems
Main Article Content
Abstract
This paper introduces a next-generation healthcare modernization framework that unifies LLM-augmented cloud AI, quantum computing, SAP enterprise integration, and lakehouse-driven secure maintenance systems. The proposed architecture leverages large language models to enhance clinical decision support, streamline administrative workflows, and enable natural-language interaction with complex medical and operational datasets. Quantum computing capabilities are incorporated to accelerate optimization, molecular simulation, and high-dimensional pattern discovery, providing computational advantages for drug development, imaging analysis, and personalized care models. A lakehouse-based secure data platform serves as the system’s foundation, ensuring unified storage, real-time analytics, multimodal data ingestion, and HIPAA/GDPR-aligned governance. Integration with the SAP ecosystem connects clinical, operational, and supply-chain processes, enabling predictive maintenance of medical equipment, automated resource planning, and synchronized data flows across ERP, EMR, and IoT infrastructures. The resulting solution provides a scalable, intelligent, and secure digital health environment that strengthens operational reliability, improves care outcomes, and accelerates innovation across healthcare providers and life-sciences organizations.
Article Details
Section
How to Cite
References
1. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL-HLT.
2. Pasumarthi, A. (2023). Dynamic Repurpose Architecture for SAP Hana Transforming DR Systems into Active Quality Environments without Compromising Resilience. International Journal of Engineering & Extended Technologies Research (IJEETR), 5(2), 6263-6274.
3. Nagarajan, G. (2022). An integrated cloud and network-aware AI architecture for optimizing project prioritization in healthcare strategic portfolios. International Journal of Research and Applied Innovations, 5(1), 6444–6450. https://doi.org/10.15662/IJRAI.2022.0501004
4. Shashank, P. S. R. B., Anand, L., & Pitchai, R. (2024, December). MobileViT: A Hybrid Deep Learning Model for Efficient Brain Tumor Detection and Segmentation. In 2024 International Conference on Progressive Innovations in Intelligent Systems and Data Science (ICPIDS) (pp. 157-161). IEEE.
5. Tamizharasi, S., Rubini, P., Saravana Kumar, S., & Arockiam, D. Adapting federated learning-based AI models to dynamic cyberthreats in pervasive IoT environments.
6. Konda, S. K. (2024). AI Integration in Building Data Platforms: Enabling Proactive Fault Detection and Energy Conservation. International Journal of Advanced Research in Computer Science & Technology (IJARCST), 7(3), 10327-10338.
7. Christadoss, J., Kalyanasundaram, P. D., & Vunnam, N. (2024). Hybrid GraphQL-FHIR Gateway for Real-Time Retail-Health Data Interchange. Essex Journal of AI Ethics and Responsible Innovation, 4, 204-238.
8. Pachyappan, R., Kotapati, V. B. R., & Shanmugam, L. (2024). TicketGenesis: LLM-Driven Compliance Evidence Extraction and Auto-Assignment Engine. Los Angeles Journal of Intelligent Systems and Pattern Recognition, 4, 325-366.
9. Kumar, S. N. P. (2025). AI and Cloud Data Engineering Transforming Healthcare Decisions. Journal Of Engineering And Computer Sciences, 4(8), 76-82.
10. Kumar, R. K. (2023). Cloud-integrated AI framework for transaction-aware decision optimization in agile healthcare project management. International Journal of Computer Technology and Electronics Communication (IJCTEC), 6(1), 6347–6355. https://doi.org/10.15680/IJCTECE.2023.0601004
11. Peram, S. (2024). Cost Optimization in AI Systems Leveraging DEMATEL for Machine Learning and Cloud Efficiency. https://www.researchgate.net/profile/Sudhakara-Peram/publication/396293333_Cost_Optimization_in_AI_Systems_Leveraging_DEMATEL_for_Machine_Learning_and_Cloud_Efficiency/links/68e5f179f3032e2b4be76f3f/Cost-Optimization-in-AI-Systems-Leveraging-DEMATEL-for-Machine-Learning-and-Cloud-Efficiency.pdf
12. Adari, V. K. (2024). The Path to Seamless Healthcare Data Exchange: Analysis of Two Leading Interoperability Initiatives. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(6), 11472-11480.
13. Balaji, K. V., Sugumar, R., Mahendran, R., & Subramanian, P. (2025). Weather forecasting model using attentive residual gated recurrent unit for urban flood prediction. GLOBAL NEST JOURNAL, 27(5).
14. Ramakrishna, S. (2022). AI-augmented cloud performance metrics with integrated caching and transaction analytics for superior project monitoring and quality assurance. International Journal of Engineering & Extended Technologies Research (IJEETR), 4(6), 5647–5655. https://doi.org/10.15662/IJEETR.2022.0406005
15. Kusumba, S. (2025). Unified Intelligence: Building an Integrated Data Lakehouse for Enterprise-Wide Decision Empowerment. Journal Of Engineering And Computer Sciences, 4(7), 561-567.
16. Sivaraju, P. S. (2024). Driving Operational Excellence Via Multi-Market Network Externalization: A Quantitative Framework for Optimizing Availability, Security, And Total Cost in Distributed Systems. International Journal of Research and Applied Innovations, 7(5), 11349-11365.
17. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. CVPR.
18. Dosovitskiy, A., et al. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. ICLR.
19. Kesavan, E., Srinivasulu, S., & Deepak, N. M. (2025, July). Cloud Computing for Internet of Things (IoT): Opportunities and Challenges. In 2025 2nd International Conference on Computing and Data Science (ICCDS) (pp. 1-6). IEEE.
20. Muthusamy, M. (2024). Cloud-Native AI metrics model for real-time banking project monitoring with integrated safety and SAP quality assurance. International Journal of Research and Applied Innovations (IJRAI), 7(1), 10135–10144. https://doi.org/10.15662/IJRAI.2024.0701005
21. Databricks, Inc. (2022). Lakehouse for Healthcare: Secure Data and AI Collaboration. Databricks Whitepaper.
22. Poornima, G., & Anand, L. (2024, April). Effective strategies and techniques used for pulmonary carcinoma survival analysis. In 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST) (pp. 1-6). IEEE.
23. Bairi, A. R., Thangavelu, K., & Keezhadath, A. A. (2024). Quantum Computing in Test Automation: Optimizing Parallel Execution with Quantum Annealing in D-Wave Systems. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 5(1), 536-545.
24. Konatham, M. R., Uddandarao, D. P., & Vadlamani, R. K. Engineering Scalable AI Systems for Real-Time Payment Platforms. https://www.jisem-journal.com/download/33_Engineering%20Scalable%20AI%20Systems%20for%20Real-Time%20Payment%20Platforms.pdf
25. Kandula, N. (2024). Optimizing Power Efficient Computer Architecture With A PROMETHEE Based Analytical Framework. J Comp Sci Appl Inform Technol, 9(2), 1-9.
26. Chiranjeevi, Y., Sugumar, R., & Tahir, S. (2024, November). Effective Classification of Ocular Disease Using Resnet-50 in Comparison with Squeezenet. In 2024 IEEE 9th International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-6). IEEE.
27. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.
28. Vasugi, T. (2023). AI-empowered neural security framework for protected financial transactions in distributed cloud banking ecosystems. International Journal of Advanced Research in Computer Science & Technology, 6(2), 7941–7950. https://doi.org/0.15662/IJARCST.2023.0602004
29. Binu, C. T., Kumar, S. S., Rubini, P., & Sudhakar, K. (2024). Enhancing Cloud Security through Machine Learning-Based Threat Prevention and Monitoring: The Development and Evaluation of the PBPM Framework. https://www.researchgate.net/profile/Binu-C-T/publication/383037713_Enhancing_Cloud_Security_through_Machine_Learning-Based_Threat_Prevention_and_Monitoring_The_Development_and_Evaluation_of_the_PBPM_Framework/links/66b99cfb299c327096c1774a/Enhancing-Cloud-Security-through-Machine-Learning-Based-Threat-Prevention-and-Monitoring-The-Development-and-Evaluation-of-the-PBPM-Framework.pdf
30. HIPAA. (2013). Health Insurance Portability and Accountability Act Privacy Rule. U.S. Department of Health and Human Services.