Next-Gen AI-Cloud Ecosystems: Leveraging Machine Learning, Computational Knot Theory, and Image Denoising for Modernization

Main Article Content

Alessandro Giovanni Rossi

Abstract

The rapid evolution of enterprise IT ecosystems demands advanced frameworks that integrate artificial intelligence (AI), cloud-native architectures, and cutting-edge computational techniques. This paper presents a Next-Generation AI-Cloud Ecosystem designed for scalable modernization across diverse industry domains. By leveraging machine learning (ML) and deep learning (DL) models, the platform enables predictive analytics, anomaly detection, and intelligent process automation. In addition, computational knot theory is employed for complex topological data analysis, offering novel approaches to network optimization and secure data structuring. Image denoising techniques further enhance the quality of visual and medical datasets, ensuring accurate downstream analytics. The proposed ecosystem demonstrates significant improvements in operational efficiency, data integrity, and adaptive intelligence, providing a holistic blueprint for enterprise modernization in the AI-driven era.

Article Details

Section

Articles

How to Cite

Next-Gen AI-Cloud Ecosystems: Leveraging Machine Learning, Computational Knot Theory, and Image Denoising for Modernization. (2025). International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 8(3), 12106-12109. https://doi.org/10.15662/IJRPETM.2025.0803006

References

1. Chen, J., & Wang, Y. (2020). Artificial intelligence in insurance: Applications and challenges. Journal of Risk and Insurance, 87(3), 605–635. https://doi.org/10.1111/jori.12345

2. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2024). Evaluation of crime rate prediction using machine learning and deep learning for GRA method. Data Analytics and Artificial Intelligence, 4 (3).

3. R., Sugumar (2023). Real-time Migration Risk Analysis Model for Improved Immigrant Development Using Psychological Factors. Migration Letters 20 (4):33-42.

4. Sangannagari, S. R. (2025). NEXT-GEN ROOFING SOLUTIONS: SMART ASSEMBLY RECOMMENDER FOR ROOFNAV IN COMMERCIAL PROJECTS. International Journal of Research and Applied Innovations, 8(3), 12262-12279.

5. S. T. Gandhi, "Context Sensitive Image Denoising and Enhancement using U-Nets," Computer Science (MS), Computer Science (GCCIS), Rochester Institute of Technology, 2020. [Online]. Available: https://repository.rit.edu/theses/10588/

6. Azmi, S. K. (2022). Computational Knot Theory for Deadlock-Free Process Scheduling in Distributed IT Systems. Well Testing Journal, 31(1), 224-239.

7. Deng, L., & Yu, D. (2018). Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7(3-4), 197–387. https://doi.org/10.1561/2000000039

8. Huang, M., & Rust, R. T. (2021). Artificial intelligence in service. Journal of Service Research, 24(1), 3–20. https://doi.org/10.1177/1094670520902262

9. Li, H., & Xu, J. (2019). Cloud computing and big data analytics for insurance industry transformation. IEEE Transactions on Services Computing, 12(4), 578–590. https://doi.org/10.1109/TSC.2018.2881360

10. Liu, Y., & Wang, X. (2022). Applications of augmented reality and virtual reality in insurance training and customer engagement. International Journal of Insurance Technology, 5(1), 45–59.

11. Smith, A., & Kumar, P. (2023). Multi-modal deep learning for health data analysis in life insurance underwriting. Artificial Intelligence in Medicine, 127, 102299. https://doi.org/10.1016/j.artmed.2023.102299

12. Zhao, Y., & Zhang, Q. (2021). Ethical considerations in AI-driven insurance decision-making. Journal of Business Ethics, 170(3), 539–553. https://doi.org/10.1007/s10551-020-04592-0

13. PwC Türkiye. (2024). The Metaverse and insurance: A new frontier in user experience and risk coverage. PwC Türkiye. https://www.pwc.com.tr/metaverse-and-insurance

14. Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767. https://arxiv.org/abs/1804.02767

15. Peddamukkula, P. K. (2024). Artificial Intelligence in Life Expectancy Prediction: A Paradigm Shift for Annuity Pricing and Risk Management. International Journal of Computer Technology and Electronics Communication, 7(5), 9447-9459.

16. Jabed, M. M. I., Khawer, A. S., Ferdous, S., Niton, D. H., Gupta, A. B., & Hossain, M. S. (2023). Integrating Business Intelligence with AI-Driven Machine Learning for Next-Generation Intrusion Detection Systems. International Journal of Research and Applied Innovations, 6(6), 9834-9849.

17. Zhang, Y., Song, Y., & Qi, H. (2024). AR/VR enabled customer engagement in life insurance: A new paradigm. Journal of Insurance Technology, 15(1), 22-38.

18. Nallamothu, T. K. (2023). Enhance Cross-Device Experiences Using Smart Connect Ecosystem. International Journal of Technology, Management and Humanities, 9(03), 26-35.

19. Adari, Vijay Kumar, “Interoperability and Data Modernization: Building a Connected Banking Ecosystem,” International Journal of Computer Engineering and Technology (IJCET), vol. 15, no. 6, pp.653-662, Nov-Dec 2024. DOI:https://doi.org/10.5281/zenodo.14219429.

20. Konda, S. K. (2023). The role of AI in modernizing building automation retrofits: A case-based perspective. International Journal of Artificial Intelligence & Machine Learning, 2(1), 222–234. https://doi.org/10.34218/IJAIML_02_01_020

21. Arulraj AM, Sugumar, R., Estimating social distance in public places for COVID-19 protocol using region CNN, Indonesian Journal of Electrical Engineering and Computer Science, 30(1), pp.414-424, April 2023.

22. Sankar,, T., Venkata Ramana Reddy, B., & Balamuralikrishnan, A. (2023). AI-Optimized Hyperscale Data Centers: Meeting the Rising Demands of Generative AI Workloads. In International Journal of Trend in Scientific Research and Development (Vol. 7, Number 1, pp. 1504–1514). IJTSRD. https://doi.org/10.5281/zenodo.15762325

23. Xu, C., Chen, M., Deshpande, P., Azanli, E., Yang, R., & Ligman, J. (2024). Enabling data-driven and empathetic interactions: A context-aware 3D virtual agent in mixed reality for enhanced financial customer experience. arXiv preprint arXiv:2410.12051. https://arxiv.org/abs/2410.12051