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ABSTRACT:

Background: The global burden of infectious diseases necessitates robust surveillance systems capable of early
detection, rapid response, and scalable data integration. Traditional surveillance architectures have demonstrated
significant limitations during recent pandemic events. This study examines the transformative potential of project-driven,
microservices-based architectures in enhancing public health surveillance capabilities.

Methods: We conducted a comprehensive systematic review and architectural analysis of 156 disease surveillance
systems implemented across 89 countries between 2018 and 2023. Data were extracted from WHO Disease Outbreak
News, CDC surveillance reports, and peer-reviewed literature. We evaluated system architectures using the Health
Information System Performance Assessment Framework.

Results: Microservices-based surveillance architectures demonstrated 47% faster outbreak detection times (median 3.2
days vs. 6.1 days, p<0.001). Systems implementing HL7 FHIR standards achieved 73% higher data exchange success
rates. Al-enhanced platforms showed sensitivity improvements of 34% for respiratory illness surveillance. Project-driven
implementations reduced deployment timelines by 58%.

Conclusions: Project-driven architectures incorporating microservices design patterns, modern interoperability
standards, and artificial intelligence capabilities represent a paradigm shift in disease surveillance, offering superior
scalability, faster response times, and enhanced analytical capabilities essential for addressing emerging infectious
disease threats.

KEYWORDS: Disease Surveillance; Microservices Architecture; Public Health Informatics; HL7 FHIR; Machine
Learning; Early Warning Systems; Data Integration; Scalable Systems; Interoperability; Outbreak Detection

I. INTRODUCTION

Infectious diseases continue to pose significant threats to global health security, with the World Health Organization
documenting over 2,227 disease outbreak events across 233 countries and territories between 1996 and 2023. The
COVID-19 pandemic exposed critical vulnerabilities in existing surveillance infrastructure, revealing fragmented
systems, delayed reporting mechanisms, and insufficient analytical capabilities that hampered effective public health
response. These shortcomings have catalyzed unprecedented investment in surveillance modernization.

The evolution of disease surveillance systems reflects broader technological transformations in healthcare information
technology. Traditional surveillance architectures, predominantly built on monolithic designs, have struggled to
accommodate the velocity, variety, and volume of contemporary epidemiological data. These legacy systems lack the
agility and scalability required for responding to rapidly evolving public health emergencies. The emergence of novel
pathogens and increasing global connectivity necessitate fundamental architectural innovations.

This research article presents a comprehensive examination of project-driven architectures for scalable disease
surveillance systems, synthesizing evidence from implementation experiences across diverse global settings. We propose
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an integrated framework that leverages microservices architecture, modern interoperability standards, and artificial
intelligence capabilities to address the limitations of traditional surveillance approaches.

1.1 Global Disease Burden and Surveillance Imperatives

The global epidemiological landscape presents formidable challenges for public health surveillance systems. Analysis of
WHO emergency event reports reveals that influenza remains the most frequently reported disease, with 771 documented
outbreaks between 1996 and 2023, followed by Ebola virus disease (342 events) and Middle East Respiratory Syndrome
Coronavirus (305 events). The Democratic Republic of the Congo recorded the highest frequency of outbreaks (272
events), followed by China (254 events) and Saudi Arabia (202 events).

Table 1: Global Disease Outbreak Statistics by Pathogen Type (1996-2023)

Disease Category Total Cases Deaths Case Fatality Rate (%)
Outbreaks (Millions) (Thousands)

Respiratory Infections 1,847 892.4 7,842 0.88
Vector-Borne Diseases 1,234 156.7 892 0.57
Viral Hemorrhagic Fevers 487 0.089 56.2 63.15
Foodborne/Waterborne 892 45.8 234 0.51
Zoonotic Diseases 678 12.3 145 1.18
Other Infectious 456 8.9 67 0.75

Source: WHO Disease Outbreak News and Emergency Event Reports (1996-2023)

The 2023 global dengue outbreak exemplifies the scale of contemporary infectious disease challenges, accounting for
approximately 5 million cases and 5,000 deaths across multiple continents. Vector-borne infections contributed to the
majority of cases in most surveillance years, while respiratory infections dominated mortality statistics during specific
outbreak periods. The case fatality rate for Marburg virus (76.86%) and Ebola virus (63.00%) underscore the critical
importance of early detection systems.

Il. LITERATURE REVIEW AND THEORETICAL FRAMEWORK

2.1 Evolution of Disease Surveillance Systems

Public health surveillance has undergone substantial transformation since the establishment of systematic disease
reporting mechanisms in the mid-twentieth century. The foundational framework was established by the WHO
International Health Regulations, which mandated reporting of specific diseases of international concern. Initial
surveillance systems relied on paper-based reporting and periodic data aggregation, resulting in significant delays
between disease occurrence and public health awareness. The digital revolution transformed surveillance capabilities
beginning in the 1990s. China implemented the National Notifiable Infectious Diseases Reporting Information System
(NIDRIS) in 2004, enabling nationwide direct reporting, followed by the China Infectious Diseases Automated-alert and
Response System (CIDARS) in 2008. Similar modernization efforts occurred across developed nations, though
implementation remained uneven in resource-limited settings.

Table 2: Evolutionary Timeline of Disease Surveillance System Architectures

Key Characteristics Primary Technologies

First Generation = 1950-1985 Paper-based, Manual  Postal systems, Telephone, Fax
aggregation

Second 1986-2000 Electronic reporting, Mainframe computers, SQL
Generation Centralized databases databases
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Third 2001-2015 Web-based, Real-time data Internet, HL7 v2, Web applications
Generation capture

Fourth 2016-Present Cloud-native, Al-enhanced, Microservices, FHIR, ML/DL, APIs
Generation Interoperable

2.2 Microservices Architecture in Healthcare

Microservices architecture represents a paradigm shift from traditional monolithic system designs, decomposing
applications into small, independently deployable services that communicate through well-defined APIs. In healthcare
contexts, this approach addresses critical challenges including system scalability, fault tolerance, and the need for rapid
feature deployment without disrupting operational continuity. Each microservice encapsulates specific functionality,
enabling targeted optimization.

Research indicates that healthcare organizations implementing microservices experience improved system
interoperability, with 71% of surveyed institutions reporting enhanced data exchange capabilities. However,
implementation challenges persist, including service orchestration complexity and distributed system debugging.
Organizations that implemented comprehensive microservices security frameworks demonstrated a 37% reduction in
overall security incidents.

Table 3: Performance Comparison Between Monolithic and Microservices Architectures

Performance Metric Monolithic Architecture Microservices Architecture

Average Response Time (ms) 847 + 234 312 + 89
System Availability (%) 97.2 99.7
Deployment Frequency (per month) 2.4 18.7

Mean Time to Recovery (hours) 4.8 0.7
Scalability Index (1-10) 4.2 8.9
Integration Complexity Score High Low-Medium
Security Incident Rate (per 100K) 2.34 1.47

Note: Data synthesized from comparative studies of 89 healthcare surveillance systems (2020-2023)
1. METHODOLOGY

3.1 Study Design and Data Sources

This research employed a mixed-methods approach combining systematic literature review, architectural analysis, and
quantitative performance assessment. The systematic review followed PRISMA guidelines, searching Semantic Scholar,
PubMed, IEEE Xplore, and ACM Digital Library for studies published between January 2018 and December 2023.
Search terms included: disease surveillance, public health informatics, microservices architecture, HL7 FHIR, machine
learning epidemiology, and early warning systems.

Primary data sources included the WHO Disease Outbreak News repository, CDC surveillance system documentation,
and technical specifications from national health information systems. We analyzed 2,789 Disease Outbreak News reports
spanning January 1996 to December 2023, extracting information on disease type, geographic location, case counts,
mortality data, and reporting latency. Additional data were obtained from the Global Health Security Index.

3.2 Analytical Framework

The Health Information System Performance Assessment Framework guided our evaluation of surveillance architectures
across five primary domains: data integration capability, system scalability, interoperability maturity, analytical
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sophistication, and response timeliness. Each domain comprised specific indicators measured using standardized
instruments developed through expert consensus methodology.

Table 4: Health Information System Performance Assessment Framework

Data Integration Source diversity, Format standardization,
Real-time capability

System Scalability Horizontal scaling, Load handling, Resource = 20 100
efficiency

Interoperability Standards compliance, APl availability, 20 100
Cross-system exchange

Analytical Capability Anomaly detection, Predictive modeling, 20 100
Visualization

Response Timeliness Alert generation, Notification delivery, 15 100

Decision support

3.3 Statistical Analysis

Quantitative analyses employed descriptive statistics, comparative hypothesis testing, and regression modeling. Outbreak
detection performance was assessed using sensitivity, specificity, and positive predictive value metrics. System
architecture comparisons utilized Mann-Whitney U tests for non-parametric distributions and independent samples t-tests
where normality assumptions were satisfied. Statistical significance was defined at p<0.05, with analyses performed
using R Statistical Software (version 4.3.1).

IV.RESULTS

4.1 Surveillance System Landscape Analysis

Our systematic review identified 156 disease surveillance systems meeting inclusion criteria, implemented across 89
countries representing all WHO regions. The distribution revealed significant geographic variation in surveillance
infrastructure maturity, with European and North American systems demonstrating higher adoption rates for advanced
architectural features. Among analyzed systems, 67 (43%) employed microservices architecture, 52 (33%) maintained
hybrid approaches, and 37 (24%) operated on fully monolithic platforms.

Table 5: Regional Distribution of Surveillance Systems by Architecture Type

(%)

European Region 57.1 31.0 11.9 78.6 52.4
Americas Region 38 52.6 34.2 13.2 84.2 60.5
Western Pacific 28 46.4 35.7 17.9 64.3 42.9
Eastern Mediterranean 18 333 38.9 27.8 44.4 27.8
South-East Asia 16 313 313 375 375 25.0
African Region 14 214 28.6 50.0 28.6 14.3
Global Total 156 429 333 23.7 57.1 39.7
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4.2 Outbreak Detection Performance

Comparative analysis of outbreak detection capabilities revealed substantial performance differentials between
architectural approaches. Microservices-based systems demonstrated median detection times of 3.2 days (IQR: 2.1-4.8)
compared to 6.1 days (IQR: 4.2-8.9) for monolithic systems (p<0.001). The sensitivity of Al-enhanced surveillance
platforms was 34% higher for respiratory illness detection compared to rule-based systems, with machine learning models
achieving AUC-ROC values exceeding 0.89 for influenza-like illness prediction.

Table 6: Outbreak Detection Performance by System Architecture and Al Enhancement

Mono (No Al) Mono (Al) Micro (No Al) Micro (Al)

Detection Time (days) 6.8+24 52+19 41+1.6 24+0.9
Sensitivity (%) 72.4 81.7 79.8 91.2
Specificity (%) 84.6 86.2 87.3 89.7
Positive Predictive Value 67.8 74.3 76.9 85.4
(%)

AUC-ROC 0.78 0.84 0.83 0.91
False Alarm Rate (%) 18.4 14.2 12.8 8.6

Note: Values as mean + SD; p<0.001 for all pairwise comparisons

4.3 Interoperability and Data Exchange

Analysis of interoperability maturity revealed that systems implementing HL7 FHIR standards achieved significantly
higher data exchange success rates (87.3% vs. 50.2%, p<0.001) compared to systems using proprietary formats or legacy
HL7 v2 messaging. The adoption of FHIR has accelerated considerably, with a 2021 survey finding only 24% of
healthcare organizations using FHIR APIs at scale, while projections indicated growth to 67% of providers and 61% of
payers by the end of 2023.

Table 7: Interoperability Performance Metrics by Standard Implementation

Interoperability Metric HL7 v2 Only HL7 FHIR

Data Exchange Success Rate (%) 50.2+124 87.3+8.7 <0.001
Integration Time (weeks) 18.4+6.2 6.8+2.9 <0.001
Data Quality Score (0-100) 64.7£11.3 82.4+7.38 <0.001
Cross-System Query Response (ms) 2,847 + 892 487 + 156 <0.001
Partner Connectivity Index 32+14 8.7+21 <0.001
Semantic Interoperability Score 47.8 78.9 <0.001

4.4 Artificial Intelligence Integration

The systematic review identified 67 studies examining Al applications in disease surveillance early warning systems.
Machine learning (ML), deep learning (DL), and natural language processing (NLP) represented the most prevalent
techniques. Al systems demonstrated capacity to process diverse data sources including epidemiological records, web-
based signals, climate data, and wastewater surveillance outputs. NLP enabled extraction of early warning signals from
news reports and social media, often detecting outbreak signals before official health notifications.
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Table 8: Al Technology Distribution in Disease Surveillance Systems

Al Technology Adoption (%) Primary Use Cases Performance Improvement

Machine Learning (ML) 78.4 Pattern recognition,  23-34% sensitivity improvement
Classification

Deep Learning (DL) 52.3 Sequence prediction, = 28-41% accuracy improvement
Image analysis

Natural Language 64.7 Text mining, Sentiment 1-2 week earlier detection

Processing analysis

Ensemble Methods 38.2 Multi-source integration 15-22% reduced false alarms

Anomaly Detection 71.6 Outbreak signal = 2.4x faster alert generation

identification

Time Series Forecasting 56.8 Incidence prediction RMSE reduction 18-32%

4.5 Project-Driven Implementation Outcomes

Analysis of implementation approaches revealed that project-driven methodologies achieved superior outcomes
compared to traditional waterfall implementations. Project-driven implementations reduced deployment timelines by
58% (median 14 months vs. 33 months) while achieving 89% stakeholder satisfaction rates. The Surveillance Outbreak
Response Management and Analysis System (SORMAS) exemplifies successful project-driven implementation,
demonstrating adaptability to evolving local needs and relative advantages including real-time reporting and improved
data quality.

Table 9: Implementation Methodology Comparison Outcomes

Implementation Metric Traditional Waterfall Project-Driven Agile

Deployment Timeline (months) 33.2+124 141+58
Stakeholder Satisfaction (%) 62.4 89.2
Requirements Change Low (23%) High (87%)
Accommodation

Cost Overrun Frequency (%) 67.3 28.4

User Adoption Rate (6 months) 54.7% 78.9%
System Adaptability Score (1-10) 4.2 8.4
Time-to-First-Value (weeks) 48.7 12.3

V. DISCUSSION

5.1 Synthesis of Principal Findings

This comprehensive analysis demonstrates that project-driven architectures incorporating microservices design patterns,
modern interoperability standards, and artificial intelligence capabilities represent a transformative approach to disease
surveillance. The convergence of these technological elements addresses fundamental limitations of traditional
surveillance infrastructure while enabling capabilities essential for responding to contemporary infectious disease threats.

The 47% improvement in outbreak detection times achieved by microservices architectures reflects the fundamental

advantages of modular, independently scalable systems. By decomposing surveillance functions into discrete services—
data ingestion, anomaly detection, alert generation, and response coordination—these architectures enable targeted
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optimization without disrupting overall system operations. This modularity proved particularly valuable during the
COVID-19 pandemic.

The integration of artificial intelligence technologies, particularly natural language processing and machine learning,
extends surveillance capabilities beyond traditional structured data sources. Al systems processing social media signals,
news reports, and electronic health records demonstrated capacity to detect outbreak signals 1-2 weeks earlier than
conventional surveillance mechanisms.

5.2 Implications for Surveillance System Design

The findings support a paradigm shift in surveillance system design philosophy, moving from centralized, monolithic
architectures toward distributed, federated models. The North Star Architecture developed by CDC exemplifies this
direction, guiding development toward cloud-native services, open-source software, and open standards that reduce data
exchange friction while maintaining security requirements.

Table 10: Surveillance System Design Recommendations

Capability Domain Design Recommendations Implementation Priority

Data Integration Multi-source ingestion pipelines, real- Critical - Foundation for all capabilities
time streaming

Interoperability FHIR R4 implementation, API-first Critical - Enables ecosystem
design connectivity

Scalability Container orchestration, auto-scaling High - Surge capacity requirement
policies

Analytics ML model serving, explainable Al High - Detection enhancement
frameworks

Security Zero-trust architecture, encryption at Critical - Compliance and trust
rest/transit

Visualization Real-time dashboards, geospatial  Medium - Decision support
mapping

Alerting Multi-channel notification, escalation High - Response timeliness
workflows

5.3 Challenges and Limitations

Several challenges constrain the widespread adoption of advanced surveillance architectures. Resource limitations in
low- and middle-income countries present significant barriers, with infrastructure gaps, workforce capacity constraints,
and competing health priorities limiting implementation feasibility. The African Region demonstrated the lowest
adoption rates for microservices architectures (21.4%) and Al capabilities (14.3%), highlighting persistent digital health
equity concerns.

Technical challenges include service orchestration complexity, distributed system debugging, and the need for
sophisticated monitoring infrastructure. Organizations implementing microservices without corresponding security
architecture experienced increased vulnerability, with 71% reporting at least one security incident attributable to improper
configuration. Ethical considerations surrounding Al-enhanced surveillance require careful attention, including data
privacy protection and algorithmic bias mitigation.

V1. PROPOSED ARCHITECTURAL FRAMEWORK
Based on the synthesis of evidence and implementation experiences, we propose an integrated architectural framework
for scalable disease surveillance systems. This framework incorporates four primary layers: data acquisition, processing
and analytics, intelligence generation, and action orchestration. Each layer is implemented using microservices design
patterns with clearly defined APIs enabling independent scaling and evolution.
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Table 11: Proposed Surveillance System Architectural Framework

Data Acquisition EHR connector, Lab FHIR APIs, Apache Kafka, Healthcare facilities, Labs,

interface, Social media NLP pipelines External sources

ingestion
Processing & Data validation, = Apache Spark, TensorFlow, Internal analytics, Research
Analytics Standardization, ML Python ecosystem partners

model serving
Intelligence Anomaly detection, Risk ML/DL models, Statistical Decision support interfaces
Generation scoring, Forecasting engines
Action Alert management, Workflow engines, Response teams, Policy
Orchestration Response  coordination,  Notification services makers, Public

Reporting

6.1 Implementation Roadmap

Successful implementation requires a phased approach balancing innovation with operational stability. We recommend
a three-phase strategy spanning 18-24 months for initial capability deployment, with continuous enhancement cycles
thereafter.

Table 12: Phased Implementation Roadmap

Foundation 0-6 months Infrastructure setup, FHIR Cloud platform, API gateway, Basic
implementation, Core pipelines data integration

Enhancement 7-12 months ML model deployment, Advanced Al-enhanced detection, Real-time
analytics, Dashboard development visualization

Optimization 13-18 months Performance tuning, Ecosystem Full-scale  operations,  Partner
expansion, Governance refinement  network, Quality metrics

Evolution 19+ months Continuous improvement, Next-gen features, Extended use
Innovation integration, Capability cases, Knowledge sharing
expansion

VII. CONCLUSIONS

This research demonstrates that project-driven architectures leveraging microservices design patterns, modern
interoperability standards, and artificial intelligence capabilities represent a paradigm shift in disease surveillance system
development. The evidence supports substantial performance improvements across detection timeliness, analytical
capability, and system scalability when compared to traditional monolithic approaches.

Key conclusions from this analysis include:

1. Microservices architectures achieve 47% faster outbreak detection times with enhanced resilience and deployment
flexibility.

2. HL7 FHIR implementation provides 73% higher data exchange success rates, representing an essential foundation
for interoperable surveillance ecosystems.

3. Al-enhanced surveillance platforms demonstrate 34% sensitivity improvements, with NLP enabling 1-2 week earlier
outbreak signal identification.

4. Project-driven implementation methodologies reduce deployment timelines by 58% while achieving superior
stakeholder satisfaction and system adaptability.
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5. Significant disparities persist between high-income and low- and middle-income countries, requiring targeted
investment and capacity building.

The COVID-19 pandemic catalyzed unprecedented investment in public health data modernization, with the CDC Public
Health Data Strategy launched in 2023 representing a comprehensive framework for national surveillance infrastructure
enhancement. Progress milestones have included laboratory data availability for over 300 million Americans, electronic
case reporting from more than 30,900 healthcare facilities, and 92% of state public health laboratories exchanging test
results with healthcare partners.

Looking forward, the convergence of advanced analytics, expanded data sources, and modernized infrastructure positions
public health surveillance systems for transformative capability enhancements. The architectural patterns and
implementation approaches documented in this research provide actionable guidance for health systems seeking to
advance their surveillance capabilities in an era of persistent infectious disease threats.

Appendix A: Supplementary Data Tables

Table Al: Comparison of Major Al-Based Early Warning Systems

System Data Al Technology | Detection Capability Coverage
Frequency

ProMED-mail Real-time Hybrid First to report 66% 150+ countries
(Human+NLP)  outbreaks

HealthMap Hourly ML + NLP Web-based signal ~ Global
detection

BlueDot Near real-time ML + NLP + COVID-19 early Global

Mobility detection

GPHIN Daily NLP WHO primary source Global

Epitweetr Real-time ML + NLP Social media EU/EEA
monitoring

EPIWATCH Real-time Al + NLP Open-source Global
intelligence

CIDARS (China) Daily Statistical + ML~ Automated alerts China

Table A2: Key FHIR Resources for Disease Surveillance Applications

FHIR Resource Surveillance Application

Patient Demographics and  administrative = Case identification and tracking
information
Condition Clinical condition or diagnosis Disease classification and coding
Observation Measurements and simple assertions Lab results, vital signs, symptoms
DiagnosticReport Findings and interpretation of diagnostic  Laboratory confirmation
tests
Encounter Healthcare interaction record Healthcare utilization patterns
Location Physical place information Geographic clustering analysis
Immunization Vaccination event record Vaccine coverage monitoring
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Appendix B: Data Source Analysis

Table B1: Data Source Characteristics for Surveillance Systems

Electronic  Health Real-time 0-24 hours Clinical High Medium

Records encounters

Laboratory Reports  Daily 1-3 days Confirmed Very High High
cases

Emergency Real-time 0-12 hours Acute Medium Low

Department presentations

Pharmacy Sales Daily 1-2 days OTC purchases  Low Medium

Social Media Real-time Minutes Self-reported Low Low
symptoms

Wastewater 2-3x weekly 3-7 days Community- Medium Medium

Surveillance level

Wearable Devices Continuous Real-time Device users Medium High

Appendix C: ML Model Performance

Table C1: Machine Learning Model Performance for Outbreak Detection

Model Type Accuracy | AUC- F1 Score Recall (%) | Precision Train
(C) ROC (%) Time

Random Forest 87.4 0.91 0.86 84.2 88.1 Medium
XGBoost 89.2 0.93 0.88 86.7 89.4 Medium
LSTM Neural Network 91.3 0.94 0.90 89.8 90.5 High
Transformer (BERT) 92.7 0.95 0.91 91.2 91.8 Very High
Support Vector Machine 82.6 0.87 0.81 79.4 83.2 Low
Ensemble (Stacking) 93.4 0.96 0.92 91.8 93.1 Very High

Note: Performance metrics based on standardized evaluation datasets
Appendix D: National Surveillance Systems

Table D1: Major National Disease Surveillance Systems

System Name Architecture Key Features

United States NNDSS / BioSense 1961/2003 Hybrid eCR Syndromic
survelllance

China NIDRIS / CIDARS 2004/2008 Centralized Direct reporting, Auto-
alert
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European Union = TESSy / EpiPulse 2007/2021 Federated Cross-border sharing

United SGSS / Syndromic 2014 Microservices Genomic integration,

Kingdom Real-time

Brazil SINAN / RNDS 1993/2020 Microservices FHIR-based, National
network

Nigeria SORMAS 2017 Microservices Outbreak response,
Mobile-first

Appendix E: Economic Analysis

Table E1: Surveillance System Implementation Costs (USD Millions)

Cost Category Small System Medium System Large System National Scale

Initial Development $0.5-1.2 $2.5-5.0 $8.0-15.0 $25.0-50.0
Infrastructure (Year 1) $0.2-0.4 $0.8-1.5 $2.5-4.0 $8.0-15.0
Integration Services $0.3-0.6 $1.2-2.5 $4.0-7.0 $12.0-20.0
Training & Capacity $0.1-0.2 $0.4-0.8 $1.5-2.5 $5.0-8.0
Annual Operations $0.15-0.3 $0.6-1.2 $2.0-3.5 $6.0-12.0
5-Year Total Cost $1.85-3.7 $7.9-16.0 $26.0-46.5 $80.0-155.0

Table E2: Return on Investment by Enhancement Category

Enhancement Category Investment (M) | Annual Payback 5-Year ROI (%)
Savings (M) Period

Electronic Case Reporting $8.5 $4.2 2.0 years 147%

Real-time Laboratory Reporting = $12.3 $7.8 1.6 years 217%

Al-Enhanced Analytics $6.7 $5.4 1.2 years 303%

Interoperability (FHIR) $15.8 $8.9 1.8 years 182%

Wastewater Surveillance $3.4 $1.8 1.9 years 165%
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