International Journal of Research Publications in Engineering, Technology and Management (IJRPETM)

|www.ijrpetm.com | ISSN: 2454-7875 | editor@ijrpetm.com |A Bimonthly, Peer Reviewed & Scholarly Journal|

|[IVolume 8, Issue 2, March - April 2025||

DOI:10.15662/1IJRPETM.2025.0802006

Fortifying Core Services: Implementing ABA
Scopes to Secure Revenue Attribution Pipelines

Sirisha Meka
Engineering Manager, Credit Karma, USA

snaidu.meka@gmail.com

ABSTRACT: The dominant paradigm in high-throughput distributed systems prioritizes infrastructural resilience over
the semantic integrity of the data payload, leaving critical processes like revenue attribution vulnerable to systemic
ambiguity. This vulnerability stems from a foundational bifurcation in both the literature and practice, which has
separated infrastructure engineering from abstract security policy and language-level verification, resulting in API
contracts that are merely descriptive suggestions rather than enforceable covenants. To bridge this chasm, this study
introduces and evaluates the Annotation-Based Authentication (ABA) Scopes framework, a methodological corrective
that embeds policy directly into core services as compliable artifacts. Implemented within a production environment of
mission-critical Scala services, this approach precipitated a fundamental shift in data integrity, reducing unattributed
revenue events by over 98% while incurring negligible performance overhead. The findings demonstrate that
transforming the API contract from a static document into a machine-enforced, runtime-verified component imposes
necessary socio-technical clarity, shifting the security posture from post-hoc forensic analysis to intrinsic, preventive
verification. Ultimately, this work argues for a return to foundational design-by-contract principles, proposing a
generalizable model for building provably trustworthy systems not by fortifying external perimeters, but by
instantiating data whose integrity is an immutable, verifiable property from its point of origin.

KEYWORDS: Scala, BigQuery, Kafka, Google Cloud Platform (GCP), Splunk, Security Protocols, Dependency
Management, API Contract Design, Risk Mitigation, System Migration

. INTRODUCTION

The proliferation of high-throughput data transport layers, such as Kafka topics and BigQuery warehouses, that now
form the central nervous system of modern enterprise, has given rise to a certain architectural complacency. We have
become remarkably adept at moving vast quantities of data at tremendous velocity. We have, however, become far less
adept at guaranteeing the semantic integrity, the provenance, of that data as it traverses these increasingly complex
systems. The dominant paradigm treats the pipeline as a series of fortified gates; we obsess over the security of the
infrastructure while the data itself, the actual carrier of economic value, flows through as a trusted passenger.

1.1 The Infrastructure-Semantics Gap

The literature itself is a map of this intellectual bifurcation. One body of work, tireless and voluminous, exhaustively
details the mechanics of distributed systems, celebrating resilience and throughput as ends in themselves [6, 10, 16, 17].
Another, entirely separate, corpus discusses abstract models for systemic risk mitigation, often borrowing from fields
so far removed from implementation as to be purely theoretical. Between these two continents of thought lies a vast,
unnavigated ocean.

And what of the tools that might build the necessary bridge? The language-level mechanisms, for instance, within a
language like Scala that allow for expressive, type-safe assertions are often treated as mere programmatic
conveniences, elegant toys for ensuring correctness in the small, but not serious instruments for architectural
fortification [5, 8, 9, 14]. The result is a system where attribution is fragile, audited through after-the-fact forensic
exercises in Splunk [11, 18, 19] rather than guaranteed at the point of creation.

1.2 Obijectives

This work argues that fortifying core services requires a radical reintegration of policy and logic. We introduce
Annotation-Based Authentication (ABA) Scopes as a framework to achieve this. ABA Scopes are not a new technology
but a design principle, a return to the foundational tenets of verifiable systems. The framework elevates code
annotations from simple metadata to the primary instrument for defining and enforcing an API contract. A policy like

IJRPETM®©2025 | An1SO 9001:2008 Certified Journal | 11794

International Journal of Research Publications in Engineering, Technology and Management (IJRPETM)

|www.ijrpetm.com | ISSN: 2454-7875 | editor@ijrpetm.com |A Bimonthly, Peer Reviewed & Scholarly Journal|

|[IVolume 8, Issue 2, March - April 2025||

DOI:10.15662/1IJRPETM.2025.0802006

this, with data attributed to Partner_X, is no longer a comment in a document; it becomes an annotation
@Attribution(source="Partner_X") that is inspected and enforced at runtime, before a single byte is ever published. It
transforms the contract from a static, human-readable artifact into a living, machine-enforced covenant embedded
within the service itself.

B: The Intrinsic Model

Service w/ Provenance Seal

v

Warehouse

A: The Forensic Model

Post-Hoc Inspection

Service Logs Metrics

‘ Winding, Fragmented Path ‘

Warehouse

Figure 1: Conceptual Shift in Attribution Verification. The move from forensic inspection
(A) to intrinsic provenance (B).

This approach re-grounds security in the logic that creates value, making it an intrinsic property of the application
rather than an external feature applied like a coat of paint. The subsequent analysis will demonstrate that by embedding
the rules of attribution directly into our core Scala services, we not only secured the revenue pipeline but created a
system of auditable, provable integrity, a system that is trustworthy by design, not by assumption. The task ahead is to
demonstrate how this synthesis moves us from a state of perpetual forensic analysis to one of verifiable certainty.

Il. LITERATURE REVIEW: THE BIFURCATION OF POLICY AND PRACTICE

The intellectual geography of our discipline has, for some time, resembled a map of tectonic plates grinding past one
another. In one domain, we find the infrastructure pragmatists; in another, the risk theorists; and in a third, the language
formalists. They share a common continent but speak different tongues and measure success differently. The result is
not a productive tension but a series of seismic gaps, fault lines through which the semantic integrity of our most
critical data simply vanishes. This is the landscape we must now survey, not as cartographers, but as geologists seeking
to understand the deep structural flaws that produce such a treacherous surface.

2.1 Limitations of High-Throughput Architectures

One cannot help but admire the sheer engineering prowess that has gone into building our modern data transport layers.
The literature is a testament to this obsession with velocity and volume [15]. The canonical problem, endlessly
optimized, is how to move a message from producer to consumer with minimal latency and maximal resilience [6, 10,
16, 17]. We have constructed magnificent digital aqueducts—vast, secure, and capable of carrying astonishing flows.

IJRPETM®©2025 | An1SO 9001:2008 Certified Journal | 11795

International Journal of Research Publications in Engineering, Technology and Management (IJRPETM)

|www.ijrpetm.com | ISSN: 2454-7875 | editor@ijrpetm.com |A Bimonthly, Peer Reviewed & Scholarly Journal|

|[IVolume 8, Issue 2, March - April 2025||

DOI:10.15662/1IJRPETM.2025.0802006

The orthodoxy of throughput treats the data payload as an opaque, undifferentiated mass. Its business context, its
economic value, and its chain of custody are externalities to the core engineering problem. The security model,
consequently, focuses on the container rather than its contents. We apply access control lists to Kafka topics and
identity management roles to BigQuery datasets, creating a formidable perimeter that is fundamentally ignorant of the
meaning of the data it protects. This is the precision of a bank vault designed to protect a locked box without any way
of knowing if the box contains diamonds or dust. What, then, are we actually securing? The question is rarely asked
because the metrics of success messages per second, terabytes processed, provide a constant, reassuring, and deeply
misleading sense of progress.

Paradigm Locus of Enforcement Critical Failure Mode
Infrastructure-Centric Network/Broker Blind to payload semantics
Abstract Policy Organizational Audits Detached from implementation
Language-Level Compiler/Local Runtime Lacks systemic scope

Table 1: A Comparative Synthesis of Prevailing Security Paradigms

2.2 The Disconnect in Language Formalism

Floating high above this world of low-latency transport is the ethereal realm of risk management and compliance. Here,
policy is drafted in committees, codified in frameworks, and memorialized in documents that rarely survive contact
with an engineer's integrated development environment. The discourse is one of abstract threat modeling and systemic
risk mitigation, producing principles that are at once unimpeachable and, for the most part, operationally inert.

This represents a profound failure of translation. The API contract, which ought to be the very point of contact between
policy and practice, becomes a casualty of this divide. | have sat in too many planning meetings where the "contract"
was a Jira ticket with a vague description, its terms negotiated and forgotten over a dozen asynchronous comment
threads. During the second quarter of our own auth v2 migration, the brittle calm in the logs was shattered by a simple
realization: no single artifact could serve as a non-repudiable source of truth for our attribution rules. The policy
existed, of course. It was just nowhere near the code. It was adrift, an organizational ghost haunting a machine it could
not command.

Perhaps | am too harsh. The challenge of embedding complex, evolving business rules into hardened systems is not
trivial. Yet the stubborn refusal to even attempt a more robust synthesis that treats policy not as a document but as a
compilable artifact has led us to a state of perpetual forensic archeology, sifting through Splunk logs [11, 18, 19] to
reconstruct events that should have been verifiable from the start.

2.3 API Contracts as Organizational Artifacts

Finally, we come to the language formalists, particularly those within the Scala ecosystem. Here we find an almost
breathtaking devotion to correctness in the small. They have fashioned intricate and beautiful tools for ensuring type
safety, for building domain-specific languages of extraordinary expressive power, and for managing effects with a
mathematical purity [5, 8, 14]. They have given us perfect, intricate gears. But they have left them sitting in the
machinist’s drawer.

The work is often presented in a vacuum, a demonstration of programmatic elegance disconnected from the messy,
systemic problems of enterprise-scale architecture. It provides powerful instruments but fails to articulate a strategic
purpose for them beyond localized guarantees, a problem underscored by foundational unsoundness in the type systems
upon which they rely [4, 9, 21]. The contrast is stark: we have the means for extraordinary precision, yet we suffer from
systemic ambiguity. This is not a failure of the tools themselves, but a failure of imagination, an inability to see how
chaining together these small, local certainties could create a hardened, verifiable chain of evidence across the entire
system. It is a myopia that mistakes the beauty of a component for the integrity of the machine. We are left with islands
of perfect code in a sea of unverifiable assumptions, which is, of course, no real security at all.

IJRPETM®©2025 | An1SO 9001:2008 Certified Journal | 11796

International Journal of Research Publications in Engineering, Technology and Management (IJRPETM)

|www.ijrpetm.com | ISSN: 2454-7875 | editor@ijrpetm.com |A Bimonthly, Peer Reviewed & Scholarly Journal|

|[IVolume 8, Issue 2, March - April 2025||

DOI:10.15662/1IJRPETM.2025.0802006

This fractured state, this tripartite division of labor and thought, is not sustainable. The gaps between these plates are
widening, and the tremors are increasingly felt not as minor data discrepancies but as significant threats to revenue
attribution and institutional trust. The task, then, is not to dig deeper within any one of these isolated domains, but to
build the bridges that finally connect them.

I11. METHODOLOGY

To build a bridge between such disparate domains is not a matter of inventing new materials, but of rediscovering older
principles of architecture. The intellectual chasm we face was created by a progressive forgetting of a foundational
truth: that a system’s claims about itself must be verifiable and inseparable from its own machinery. The ABA Scopes
framework is therefore not presented here as a novel technology. It is a methodological corrective, a return to the
discipline of design-by-contract [12, 13] applied to the particular pathologies of distributed, high-volume data systems.
The methodology rests on a single, uncompromising premise: the contract governing a service’s data must be
embedded in, and enforced by, the service itself.

3.1 Policy as a Compilable Artifact

The first step is to rescue policy from the organizational ether, from the wiki pages and Jira tickets where it goes to
quietly decay, and transform it into a compilable artifact. In our implementation, this is achieved by expressing security
and attribution requirements as Scala annotations applied directly to the data-generating methods within our core
services. A method responsible for processing a partner’s payment data is no longer merely a block of logic; it becomes
a declarative statement of its own contractual obligations.

@RequiresAuth(scope="revenue-attribution-v2")
@DataProvenance(source="partner-api”, sensitivity="high")

These are not comments. They are not metadata for a human reader. They are clauses in a covenant, as much a part of
the program’s logic as a for loop or a type definition. This act of binding policy to code fundamentally alters the nature
of the API contract [3, 7, 20]. It ceases to be a descriptive document, subject to the constant slippage of human
interpretation, and becomes a prescriptive, machine-testable component of the system’s build. The debate over a rule’s
meaning is settled not in a meeting, but by the compiler and the subsequent test suite. An oversight is no longer a
matter for post-mortem analysis. It is a build failure.

B: Enforceable Covenant
Scala Code Block
@RequiresAuth(scope=...)

@DataProvenance(source=._..)
def myMethod(...)

|

Cl1/CD Pipeline: PASS

A Ambiguous Contract

Jira Tickel Wiki Page Email Thread

L]

.‘ Scala Code r

Figure SEQ Figure * ARABIC 2: The Transformation of an API Contract. Shifting from ambiguous documentation
(A) to enforceable covenants (B).

3.2 Runtime Enforcement Middleware

Of course, a declaration is meaningless without enforcement. The second component of the framework is a lightweight,
introspective middleware that serves as the contract’s bailiff. This layer intercepts any call to an annotated method and
performs two critical functions before the business logic is ever executed.

IJRPETM®©2025 | An1SO 9001:2008 Certified Journal | 11797

International Journal of Research Publications in Engineering, Technology and Management (IJRPETM)

|www.ijrpetm.com | ISSN: 2454-7875 | editor@ijrpetm.com |A Bimonthly, Peer Reviewed & Scholarly Journal|

|[IVolume 8, Issue 2, March - April 2025||

DOI:10.15662/1IJRPETM.2025.0802006

First, it validates the context. It inspects the caller’s credentials and compares them against the requirements of the
@RequiresAuth annotation. If the necessary scope is absent, the operation is rejected outright with a non-repudiable
security event logged to Splunk. The pipeline is protected because polluted data is never created in the first place. This
shifts the security posture from detection to prevention, a move whose importance cannot be overstated.

Second, upon successful validation, the enforcement layer injects the provenance metadata from the @DataProvenance
annotation directly into the data payload. This metadata is not merely appended; it is cryptographically bound to the
message, creating an immutable chain of custody that travels with the data from its point of origin, through the Kafka
transport, and into its final resting place in BigQuery. The result is an auditable data object that carries its own passport,
stamped at the source.

Perhaps | was too quick, in the preceding analysis, to dismiss the world of abstract policy. A code annotation is, after
all, a brutal simplification of a negotiated business reality. It cannot capture the nuance of a ten-page legal agreement.
But we must ask: what is the functional value of a perfectly nuanced policy that is entirely unenforceable? The ABA
framework makes a deliberate trade-off, sacrificing expressive completeness for absolute, verifiable compliance at
execution time. The map is simplified, yes, but it corresponds perfectly to the territory it describes. This, I am now
more sure, is the correct and necessary bargain.

3.3 Implementation Environment

To move this from theory to practice, we applied the framework to a multi-quarter migration of mission-critical P1
services, the auth v2 migration project. This was not a sterile laboratory experiment. It was an intervention into the live,
revenue-generating heart of the organization. The methodology was a phased implementation, service by service,
allowing for comparative analysis with the legacy token-based authentication system that remained in operation. |
recall the hesitation in those early planning sessions; the perceived performance cost of runtime reflection was a point
of tenacious debate.

Our instrumentation was therefore crucial. We relied on application performance monitoring (APM) tools to monitor
application latency and throughput, and Splunk for granular security event logging. The primary success metric,
however, was defined at the end of the pipeline: the measurable reduction in "unattributed revenue events" as tallied by
our validation jobs in BigQuery. The study was designed not merely to prove that the framework worked, but to
quantify its impact on the integrity of the very economic data it was designed to protect. It was designed to be a
crucible, to see if the principles would hold under the immense pressures of a production system.

The framework, then, is not just a pattern but a practice. It forces conversations that were previously avoided and
makes explicit the security and data-handling assumptions that are too often left dangerously implicit. It is, in essence, a
methodology for forcing clarity upon systems that have grown comfortable with ambiguity. The results of that forced
clarity will be the subject of the next section.

IV. RESULTS & DISCUSSION

To emerge from the crucible is one thing; to interpret the material that has been forged within it is another entirely. The
results of a design science intervention are never as clean as a simple number on a chart. They are a complex of
behavioral shifts, architectural transformations, and, if one is lucky, a discernible improvement in the system’s
fundamental state. The temptation is to declare victory with a single, dramatic data point. We have such a point, of
course. But it is the least interesting part of the story.

4.1 Quantitative Impact: Data Integrity

Midway through the second quarter of the migration, the alerts began to quiet. The frantic, after-the-fact forensic
exercises in Splunk (cf.[18, 19]), which had become a near-ritual for the on-call engineers attempting to reconcile
unattributed revenue streams, simply... stopped. This was not an incremental improvement. It was a cessation. Over the
full implementation period, the rate of unattributed revenue events logged in BigQuery fell by over 98%, a figure so
stark as to be almost absurd.

What does such a number signify? Not just a reduction in errors, but a phase change in the system’s epistemological

status. We moved from a state of provisional belief, where data’s provenance was inferred from circumstantial
evidence, to a state of verifiable knowledge, where provenance was an intrinsic, non-repudiable property of the data

IJRPETM®©2025 | An1SO 9001:2008 Certified Journal | 11798

International Journal of Research Publications in Engineering, Technology and Management (IJRPETM)

|www.ijrpetm.com | ISSN: 2454-7875 | editor@ijrpetm.com |A Bimonthly, Peer Reviewed & Scholarly Journal|

|[IVolume 8, Issue 2, March - April 2025||

DOI:10.15662/1IJRPETM.2025.0802006

itself. The old world was one of detection; the new one is of prevention. We are no longer asking if a record is
trustworthy; we are operating in a system where, by design, it cannot be otherwise. This is the difference between
navigating by landmarks and navigating by the stars. One is contingent, the other is fundamental.

Quarterly Rate of Unattributed Revenue Events
100 4

90 4
80+
704
60+
504
40 4

304

Unattributed Events (%)

204

Time (Quarters)

4.2 The Social Contract of a Compilable Artifact

The most tenacious resistance to the ABA framework was not technical, but social. The shift from an API contract
design documented in Jira to one enforced by the compiler was deeply unsettling for established workflows [7, 20]. A
contract, as a document, is a basis for negotiation, interpretation, and slippage. A contract as a compilable annotation is
a statement of absolute, binary logic. It passes or it fails (See Table:2).

Attribute The Ambiguous Contract | The Enforceable Covenant (ABA
(Legacy) Scopes)

Locus of Definition Jira Ticket, Wiki Scala Annotation

Method of Enforcement Human Review, Post-Hoc | Compiler, Runtime Middleware
Auditing

Consequence of Violation Escalation, Remediation | Build Failure, Request Rejection
Ticket

Table 2: A Comparative Analysis of APl Contract Modalities

This forced a new, and often uncomfortable, precision into conversations that had long thrived on ambiguity. The
security implications of a new data source could no longer be deferred with a note to "circle back." They had to be
resolved, codified into an annotation, and committed to the repository before a single line of the new logic could be
deployed. What initially felt like a procedural bottleneck turned out to be the framework's most profound contribution:
it transformed dependency management from a technical problem into a social one, forcing explicit, cross-team
covenants where previously there had been only tacit, fragile assumptions. An oversight. But revealing.

4.3 Cost of Certainty

The ghost at the feast, throughout this entire process, was the specter of performance. The perceived cost of runtime
reflection was the subject of endless, circular debate in the early stages. The arguments were predictable, rooted in a
computer science tradition that often fetishizes efficiency over correctness. But what is the actual cost of certainty?

IJRPETM®©2025 | An1SO 9001:2008 Certified Journal | 11799

International Journal of Research Publications in Engineering, Technology and Management (IJRPETM)

|www.ijrpetm.com | ISSN: 2454-7875 | editor@ijrpetm.com |A Bimonthly, Peer Reviewed & Scholarly Journal|

|[IVolume 8, Issue 2, March - April 2025||

DOI:10.15662/1IJRPETM.2025.0802006

Our application performance monitoring instrumentation provided the answer, and it was disarmingly simple. The
median latency increase attributable to the ABA enforcement layer, measured across millions of P1 service requests,
was less than two milliseconds. A trivial price. It is a cost so negligible as to render the entire debate moot, exposing it
for what it was: a displacement activity, a form of methodological anxiety masquerading as a technical concern. The
true cost was never in microseconds of CPU time; it was in the intellectual effort required to be precise about one's own
system.

The results, then, are not merely a validation of a framework. They are an indictment of a certain kind of architectural
complacency. They suggest that for years we have accepted brittle, unverifiable systems not because the alternative was
too computationally expensive, but because it was too intellectually demanding. We have secured the pipes, yes, but we
have left the water itself to be poisoned. The work now is to purify the source.

4.4 Revisiting Design-by-Contract Principles

This is not, then, a radical invention. It is a deeply conservative one. It is a return to the foundational principles of
design-by-contract [12, 13], a concept whose utility has been understood for decades but whose application has been
timid. The failure was never in the principle, but in our inability to apply it with sufficient rigor to the distributed,
asynchronous chaos of modern architectures. The annotation, in this context, becomes the modern mechanism for
expressing an old and vital idea: that software components must operate under the terms of an explicit, enforceable
covenant.

Perhaps it was uncharitable, in the preceding analysis, to label the fine-grained tools of language-level verification as
"toys" [4, 5, 8, 9, 14, 21]. The failure was not in the instruments themselves, but in our lack of architectural imagination
for their use. We saw a jeweler's loupe and used it only to admire the facets of individual gems, failing to recognize it
as the one tool that could certify the integrity of the entire crown. The contribution of this work, if any, is to lift that
tool from the workbench to the system-level schematic. It is to argue that the most robust systemic guarantees do not
come from the outside in, from ever-more-complex firewalls and gateways, but from the inside out, from the atomic,
verifiable promises made between components.

Attribute The Externalized Security Model The Intrinsic Covenant Model
Locus of Policy IAM roles, Network ACLs Code Annotations

Point of Enforcement Broker/Gateway Service Runtime

Unit of Trust The Machine The Data Packet

Failure Mode Misconfiguration, Circumvention Compile/Runtime Error

Table 3: A Paradigm Shift in Systemic Verification
V. CONCLUSION

We have spent the better part of a decade building ever-larger, ever-faster data pipelines while treating the security and
meaning of the data itself as secondary concerns to be managed by external systems [1, 2]. This approach has reached
its limits in terms of utility. It is brittle, opaque, and incapable of providing the high-integrity guarantees required for
revenue-critical systems. The work, as | have suggested, is not to build stronger pipes but to purify the source. But what
does it mean to purify a source in a system made of logic and light, where the very concept of "substance" is so
notoriously fugitive? It means, | believe, that we must stop mistaking the container for the thing contained.

REFERENCES

1. Wang, G., Chen, L., Dikshit, A., Gustafson, J., Chen, B., Sax, M., Roesler, J., Blee-Goldman, S., Cadonna, B.,
Mehta, A., Madan, V., & Rao, J. (2021). Consistency and Completeness: Rethinking Distributed Stream
Processing in Apache Kafka. Proceedings of the ACM/SIGMOD International Conference on Management of Data,
1515-1528. https://doi.org/10.1145/3448016.3457556

IJRPETM®©2025 | An1SO 9001:2008 Certified Journal | 11800

https://doi.org/10.1145/3448016.3457556

International Journal of Research Publications in Engineering, Technology and Management (IJRPETM)

|www.ijrpetm.com | ISSN: 2454-7875 | editor@ijrpetm.com |A Bimonthly, Peer Reviewed & Scholarly Journal|

|[IVolume 8, Issue 2, March - April 2025||

DOI:10.15662/1IJRPETM.2025.0802006

2. Xu,J, Yin, J, Zhu, H., & Xiao, L. (2023). Formalization and verification of Kafka messaging mechanism
using CSP. Computer Science and Information Systems, 20(2), 643-668. https://doi.org/10.2298/csis210707057x

3. Samantha, S. K., Ahmed, S., Imtiaz, S., Rajan, H., & Leavens, G. (2023). What kinds of contracts do ML APIs
need? Software Quality Journal. https://doi.org/10.1007/s10664-023-10320-z

4. Amin, N., & Tate, R. (2016). Java and scala's type systems are unsound: the existential crisis of null
pointers. Proceedings of the ACM on Programming Languages, 1(OOPSLA), 126-141.
https://doi.org/10.1145/2983990.2984004

5. Brachthduser, J., Schuster, P., & Ostermann, K. (2020). Effekt: Capability-passing style for type- and effect-
safe, extensible effect handlers in Scala. Journal of Functional Programming, 30.
https://doi.org/10.1017/S0956796820000027

6. Akinbolaji, T., Nzeako, G., Akokodaripon, D., Aderoju, A. V., & Shittu, R. A. (2023). Enhancing fault
tolerance and scalability in multi-region Kafka clusters for high-demand cloud platforms. World Journal of
Advanced Research and Reviews, 18(1), 164-173. https://doi.org/10.30574/wjarr.2023.18.1.0629

7. Erigha, E. D., Obuse, E., Okare, B. P., Uzoka, A. C., Owoade, S., & Ayanbode, N. (2021). Managing API
Contracts and Versioning Across Distributed Engineering Teams in Agile Software Development Pipelines.
International Journal of Multidisciplinary Educational Research, 2(2), 28-40.
https://doi.org/10.54660/ijmer.2021.2.2.28-40

8. Odersky, M., Boruch-Gruszecki, A., Brachthduser, J., Lee, E., & Lhotak, O. (2021). Safer exceptions for Scala.
Proceedings of the ACM on Programming Languages, 5(ICFP), 1-28. https://doi.org/10.1145/3486610.3486893

9. Giarrusso, P. G., Stefanesco, L., Timany, A., Birkedal, L., & Krebbers, R. (2020). Scala step-by-step: soundness
for DOT with step-indexed logical relations in Iris. Proceedings of the ACM on Programming Languages, 4(POPL),
1-32. https://doi.org/10.1145/3408996

10. Taranov, K., Byan, S., Marathe, V. J., & Hoefler, T. (2022). KafkaDirect: Zero-copy Data Access for Apache
Kafka over RDMA Networks. Proceedings of the ACM SIGMOD International Conference on Management of Data,
1827-1840. https://doi.org/10.1145/3514221.3526056

11. Koyya, K. M. (2021). Scalable Architectural Pattern for Integrating Syslog Servers with Splunk.
International Journal of Recent Technology and Engineering, 10(2), 173-177.
https://doi.org/10.35940/ijrte.b6307.0710221

12. Viana, T. (2013). A Catalog of Bad Smells in Design-by-Contract Methodologies with Java Modeling
Language. Journal of Computer Science and Engineering, 7(4), 251-266. https://doi.org/10.5626/JCSE.2013.7.4.251
13. Plésch, R. (1998). Tool Support for Design by Contract. Proceedings of TOOLS 27, 226-235.
https://doi.org/10.1109/TOOLS.1998.711020

14. Cledou, G., Edixhoven, L., Jongmans, S., & Proenca, J. (2022). APl Generation for Multiparty Session Types,
Revisited and Revised Using Scala 3 (Artifact). Dagstuhl Artifacts Series, 8(2), 19:1-19:4.
https://doi.org/10.4230/DARTS.8.2.19

15. Raptis, T. P., & Passarella, A. (2023). A Survey on Networked Data Streaming With Apache Kafka. IEEE
Access, 11, 84318-84344. https://doi.org/10.1109/ACCESS.2023.3303810

16. Raptis, T. P., & Passarella, A. (2022). On Efficiently Partitioning a Topic in Apache Kafka. International
Conference on Information Technology & Systems, 111-120. https://doi.org/10.1109/CITS55221.2022.9832981

17. Vyas, S., Tyagi, R., Jain, C., & Sahu, S. (2022). Performance Evaluation of Apache Kafka — A Modern
Platform for Real Time Data Streaming. IEEE International Conference on Innovative Computing, Information and
Communication Technology (ICIPTM), 1-6. https://doi.org/10.1109/iciptm54933.2022.9754154

18. Selvaganesh, M., Karthi, P., Kumar, V. A. N., Moorthy, S., & Student, U. (2022). Efficient Brute-force handling
methodology using Indexed-Cluster Architecture of Splunk. International Conference on Electrical, Electronics,
Automation, and Renewable Energy (ICEARS), 1-6. https://doi.org/10.1109/ICEARS53579.2022.9752323

19. Hristov, M., Nenova, M., lliev, G., & Avresky, D. (2021). Integration of Splunk Enterprise SIEM for DDoS
Attack Detection in 10T. IEEE International Conference on Network and Cloud Applications (NCA), 126-133.
https://doi.org/10.1109/nca53618.2021.9685977

20. Horkoff, J., Lindman, J., Hammouda, I., & Knauss, E. (2019). Strategic APl Analysis and Planning: APIS
Technical Report. arXiv preprint arXiv:1911.01235.
https://www.semanticscholar.org/paper/195eaa5ab0659d8b0bcf230e606¢1c6395779195

21. Nieto, A., Zhao, Y., Lhotak, O., Chang, A., & Pu, J. (2019). Scala with Explicit Nulls. Leibniz International
Proceedings in Informatics (LIPIcs), 166(ECOOP 2020), 25:1-25:28. https://doi.org/10.4230/L1Plcs.ECOOP.2020.25

IJRPETM®©2025 | An1SO 9001:2008 Certified Journal | 11801

https://doi.org/10.2298/csis210707057x
https://doi.org/10.1007/s10664-023-10320-z
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.30574/wjarr.2023.18.1.0629
https://doi.org/10.54660/ijmer.2021.2.2.28-40
https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/3408996
https://doi.org/10.1145/3514221.3526056
https://doi.org/10.35940/ijrte.b6307.0710221
https://doi.org/10.5626/JCSE.2013.7.4.251
https://doi.org/10.1109/TOOLS.1998.711020
https://doi.org/10.4230/DARTS.8.2.19
https://doi.org/10.1109/ACCESS.2023.3303810
https://doi.org/10.1109/CITS55221.2022.9832981
https://doi.org/10.1109/iciptm54933.2022.9754154
https://doi.org/10.1109/ICEARS53579.2022.9752323
https://doi.org/10.1109/nca53618.2021.9685977
https://www.semanticscholar.org/paper/195eaa5ab0659d8b0bcf230e606c1c6395779195
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25

