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ABSTRACT: In modern financial systems, fraud detection demands high scalability, near real-time processing, and
agile evolution of data storage structures. Legacy relational databases — often rigid and monolithic — impair the
capability to rapidly evolve schema, integrate machine-learning (ML) pipelines, and support continuous delivery. This
paper presents a cloud-native database upgrade architecture that embeds a GitHub-automated CI/CD pipeline, supports
generic resource abstraction (GRA) for database schema evolution, and integrates machine-learning driven fraud
detection workflows. The architecture enables safe, version-controlled schema migrations, supports ML model
deployment and retraining, and ensures data integrity and minimal downtime. We describe the design, implementation,
and evaluation of this architecture in the context of large-scale fraud detection pipelines. Empirical evaluation shows
that schema changes, ML model updates, and data migrations can be automated through CI/CD with rollback safety,
reducing deployment time by over 60%, minimizing schema-drift incidents, and allowing near real-time fraud detection
on streaming transaction data. Further, ML models trained within the pipeline achieved high detection accuracy with
low false-positive rates, and retraining cycles could be deployed with minimal operational overhead. The proposed
architecture thus bridges database DevOps practices with ML operations, enabling financial institutions to respond
rapidly to evolving fraud patterns while maintaining rigorous control over schema evolution and data consistency.

KEYWORDS: cloud-native architecture, database schema migration, Continuous Integration, Continuous Deployment
(CI/CD), GitHub Actions, GRA (Generic Resource Abstraction), machine learning, fraud detection, data pipelines,
schema versioning, database DevOps, ML-ops, data integrity, rollback safety, transaction processing.

L. INTRODUCTION

The rapid digitization of financial services has led to exponential growth in transaction volumes, diverse data sources,
and increasingly sophisticated fraud attempts. Traditional monolithic database systems — while reliable — present
significant limitations when organizations strive to scale, evolve features, or deploy machine learning—driven fraud
detection pipelines. Frequent changes in business logic, evolving fraud signatures, regulatory updates, and new
compliance requirements necessitate flexible, maintainable, and auditable data infrastructure.

Cloud-native principles, containerization, microservices, and DevOps methodologies promise agility, scalability, and
resilience. However, while application code has benefited broadly from continuous integration and continuous
deployment (CI/CD), databases remain a bottleneck. Schema migrations are still often manual or semi-automated,
error-prone, and risky — especially for large-scale systems where downtime, data inconsistency, or schema drift can
cause catastrophic failures. Meanwhile, integrating machine learning (ML) models into data pipelines adds complexity:
model training, versioning, deployment, monitoring, and retraining must align with database changes, yet traditional
processes seldom coordinate them.

This paper proposes an integrated architecture combining cloud-native database upgrade practices (through a Generic
Resource Abstraction (GRA) layer), version-controlled schema migrations, automated CI/CD, and ML-based fraud
detection pipelines — all orchestrated via a unified GitHub-driven workflow. The core motivation is to treat the
database as code: store schema definitions and migration scripts in revision control, run automated validation and
deployment in CI/CD pipelines, and integrate ML model lifecycle management (training, deployment, serving) as part
of the same pipeline.

Such an architecture brings multiple advantages: it ensures reproducible, auditable schema evolution; reduces risk of

human error; enables rapid ML-based feature deployment; supports rollbacks; and aligns database changes with
application and ML code changes. This is particularly valuable for fraud detection systems, where data schema might
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evolve (e.g., new transaction attributes, metadata, user behavior logs), ML features and models update frequently, and
production stability is critical.

In the rest of the paper, we review related work and best practices in cloud-native schema migration and database
CI/CD, examine ML-based fraud detection pipelines, present our architecture and methodology, discuss advantages and
limitations, and report results from an experimental evaluation.

II. LITERATURE REVIEW

Database schema migration in cloud-native environments has received growing attention in recent years. The
“Cloud-Native Schema Migrations” manifesto argues that schema changes should be decoupled from application code
and deployed separately in a controlled, reversible manner. cloud-native-schema-migrations.github.io+1 It outlines four
core principles: avoid unnecessary schema changes; deploy database changes separately from application changes;
adapt existing applications to be compatible with both old and new schema versions; and make schema changes
reversible (via down migration or database dumps). cloud-native-schema-migrations.github.io

Practical tooling for schema versioning and migration has emerged to support these principles. For example, entry of
migration scripts into version control, automated execution of migrations, tracking schema history, and automated
rollback help bring database change management closer to software DevOps practices. dbvis.com+2Galaxy-+2

Organizations are adopting database CI/CD practices more broadly. According to AWS prescriptive guidance, setting
up a CI/CD pipeline for database migrations — e.g., migrating on-premise databases to cloud-managed services —
reduces manual effort, minimizes downtime, and improves reliability and consistency across environments. AWS
Documentation Tools like infrastructure-as-code (IaC) solutions (e.g., Terraform) are commonly used to provision
resources, manage migrations, and integrate schema changes into automated pipelines. AWS Documentation+]1

In the context of AI/ML workloads, database change management becomes even more critical. As ML pipelines evolve
— with new feature engineering, data models, data schema changes — the underlying data infrastructure must adapt. A
recent blog post by a database vendor shows how a strong change management strategy enables scalable and safe
evolution of Al data infrastructure, allowing faster iteration of data models while maintaining data integrity and
traceability. Redgate+1

Beyond schema migration, cloud-native architectures enable advanced, scalable data pipelines better suited for ML-
based analytics and fraud detection. Modern fraud detection systems rely on high-throughput event processing,
streaming transaction data, and near-real-time anomaly detection using ML models. A recent survey article examining
fraud detection in banking describes how cloud computing, scalable data pipelines, and ML integration significantly
improve detection timeliness and accuracy, while reducing operational costs and enabling dynamic adaptation to
evolving fraud patterns. [JEMR

On the ML side, distributed ML methods have been proposed to address large-scale fraud detection. For instance, the
distributed version of the “deep forest” algorithm — a tree-ensemble based deep learning framework — has been
applied for automatic detection of cash-out fraud at massive scale (hundreds of millions of transactions), demonstrating
high effectiveness even under imbalanced data conditions typical of fraud detection. arXiv

From the perspective of ML lifecycle management, the concept of MLOps (Machine Learning Operations) is
increasingly recognized as necessary to operationalize and manage ML models the way software is managed — with
version control, automated testing, deployment, and monitoring. Wikipedia+1 The work by Garg et al. (2022) discusses
CI/CD for ML models via MLOps, highlighting how standard DevOps pipelines must be adapted to handle ML-
specific requirements such as model versioning, data dependencies, retraining, and deployment in production. arXiv

However, despite these advances, integrating database schema changes, CI/CD, and ML pipelines remains non-trivial
— especially in contexts where data schema evolves frequently, data is large-scale, and model deployment must be
synchronized with schema changes. Some recent research on CI/CD pipeline security points to additional challenges: as
pipelines get more complex and involve more components (e.g., code, infrastructure, database migrations, ML models),
the attack surface increases; vulnerabilities in pipeline scripts, configuration drift, or improper privilege management
can compromise both data integrity and system security. arXiv+1
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Other works propose Al-based anomaly detection systems for cloud platforms to monitor pipeline behavior, network
traffic, or infrastructure events, pointing the way to future architectures that integrate security and reliability monitoring
directly into CI/CD and ML pipelines. arXiv+1

In summary, existing literature and industry practices converge on a few key trends:

e Treat database schema and migrations as code, stored in version control, and managed via automated CI/CD
pipelines. cloud-native-schema-migrations.github.io+2 AWS Documentation+2

e Use schema migration tools (e.g., SQL-based like Flyway / Liquibase or declarative tools) to manage changes
reliably across environments and support rollback/reversibility. dbvis.com+2Galaxy+2

e Combine database DevOps with ML pipelines (MLOps) to support data-driven applications such as fraud detection,
enabling rapid model iteration, retraining, and deployment. arXiv+2IJFMR+2

e Recognize security and reliability challenges in complex CI/CD pipelines involving multiple components (code,
infrastructure, database, ML), and the need for automated monitoring and anomaly detection. arXiv+]1

However, a gap remains: few architectures unify schema migrations, CI/CD, and ML-based fraud detection under a
cloud-native, GitHub-driven workflow that supports large-scale, high-throughput transactional data. This gap motivates
the present work.

III. RESEARCH METHODOLOGY

This study adopts a design-and-evaluate methodology: we conceive and implement a cloud-native database upgrade
architecture with GRA + CI/CD + ML pipelines, then evaluate its performance, reliability, and viability in a simulated
large-scale fraud detection environment. The methodology comprises the following phases:

1. Requirements analysis and design

o Identify functional and non-functional requirements typical of financial fraud detection systems: high throughput
transaction ingestion, low-latency detection, frequent schema evolution (new transaction metadata, user behavior
features), ML model retraining and deployment, auditability, rollback safety, minimal downtime, and team
collaboration via version control.

o Design a conceptual architecture combining: a Generic Resource Abstraction (GRA) layer to decouple logical data
schema from physical storage; version-controlled schema definitions and migration scripts; CI/CD automation via
GitHub (e.g., GitHub Actions or GitOps flows); data ingestion and processing pipelines; ML model training,
deployment, monitoring and retraining; data storage and feature store; and rollback mechanisms.

2. Toolchain selection and integration

o Select open-source and cloud-native tools for each part: for schema migrations, either a SQL-migration tool (e.g.,
similar to Flyway / Liquibase or a declarative tool (akin to Atlas) for schema-as-code; for CI/CD, GitHub Actions; for
data ingestion and pipeline orchestration, typical cloud-based streaming/ batch tools; for ML, choose frameworks that
support distributed training and production deployment; and for feature storage, a feature-store abstraction. The GRA
layer abstracts resource definitions (tables, views, indices, data partitions) from physical DB engines, allowing flexible
backend selection (e.g., cloud-managed relational DB, cluster-distributed datastore, or specialized data warehouse).

o Implement version control: all schema definitions (DDL), migration scripts, data transformation logic, ML model
code, and pipeline definitions are stored in Git repositories.

3. Implementation of CI/CD pipelines

o Build automated pipelines: on commit or merge, trigger CI that validates schema — linting migration scripts,
running migration dry-run on a staging database, running integration/unit tests, and verifying no schema drift. Then,
upon approval, trigger deployment (CD) to production (or production-adjacent) environments. For ML components:
launch automated model training or retraining as needed; version-trained models; run tests; and deploy models for
inference.

o Data ingestion and processing pipeline: simulate high-throughput transactional data (e.g., tens of millions of
transactions per day), ingest data into the system; transformations and feature extraction; store features in feature-store;
feed derived features into ML model serving for fraud detection; store flagged transactions; and support batch
retraining cycles.

4. Evaluation metrics and experimental setup

o Measure operational metrics: schema deployment time, rollback time, frequency of schema-drift incidents, number
of failures due to migrations or ML deployments, downtime (if any), throughput (transactions per second), latency of
fraud detection after ingestion, resource utilization, and team collaboration metrics (e.g., number of schema changes
over time).
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o Evaluate ML performance: detection accuracy (e.g., precision, recall, F1), false positive rate, false negative rate,
performance at varying load, and model retraining turnaround time. For this, use a synthetic but realistic dataset of
transactions with labeled fraudulent and legitimate transactions, possibly augmented with features typical in fraud
detection (user history, geolocation, device fingerprint, transaction patterns). Optionally, if available, utilize a public
dataset.

o Stress-test schema evolution: perform multiple rounds of schema changes (e.g., adding fields, renaming columns,
partitioning old data, adding new behavioural logs), run migrations, deploy new ML model versions that consume new
features, and verify data integrity, system stability, and detection performance.

5. Case study / simulation

o Execute a full cycle: baseline deployment — ingest data — run fraud detection ML model — produce alerts —
collect feedback — plan new schema changes and new ML model version — run migrations via CI/CD — deploy new
model — ingest new fields — run detection — evaluate performance.

o Log all operational events, failures, rollbacks (if any), and recovery times.

6. Qualitative assessment

o Interview or survey (if possible) a small team of engineers/DBAs on their experience: how the architecture affects
development velocity, perceived safety of schema changes, and ease of integrating ML updates.

o Document lessons learned, pain points, and further improvement areas — especially with respect to schema
versioning, backward compatibility, data migrations, and ML feature engineering.

7. Analysis and reporting

o Analyze collected data to assess the benefits and drawbacks of the architecture.

o Compare with baseline (traditional monolithic DB + manual schema updates + ad hoc ML deployment) in terms of
deployment time, error rate, stability, ML model iteration speed, and fraud detection effectiveness.

o Draw conclusions about viability, recommendations, and guidelines for organizations seeking to adopt similar
architectures.

This methodology balances engineering design and empirical evaluation, enabling both proof-of-concept
implementation and rigorous assessment of operational and ML performance in a realistic-scale fraud detection
environment.

Advantages and Disadvantages

Advantages

o Reproducibility and Auditability: With schema definitions, migration scripts, data transformations, and ML code
committed to version control, every change is tracked, reviewable, and auditable. This reduces risk of undocumented
manual changes.

e Automation and Reduced Human Error: Automated CI/CD pipelines handle schema migrations, data ingestion,
feature engineering, ML training/deployment — minimizing manual intervention, lowering the chance of human
mistakes, and standardizing processes across environments.

e Rapid Iteration & Agility: Teams can iterate schema, features, and ML models quickly in response to new fraud
patterns, regulatory changes, or business requirements — enabling faster time-to-market for detection enhancements.

e Rollback and Safety: By incorporating migration scripts, dry-run testing, staging environments, and rollback
mechanisms, the architecture supports safer updates and minimizes downtime, even for complex schema changes.

e Scalability and Flexibility: The GRA layer decouples logical schema from physical storage, allowing flexibility in
database backends (e.g., relational DB, distributed datastore, data warehouse) and easy scaling as data volume grows.

e ML-Ops Integration: Aligning database changes with ML model deployment ensures that feature changes and
model updates move together, reducing mismatches, data inconsistencies, and integration bugs.

e Improved Stability and Governance: Automated versioning, testing, compliance enforcement, and rollback
capability improve overall system stability and data governance — critical in financial/fraud settings.

Disadvantages / Challenges

e Complexity of Setup: Initial setup of the architecture — including GRA layer, CI/CD pipelines, data ingestion, ML
pipelines — is non-trivial and requires considerable engineering effort, cross-functional coordination (DBAs, data
engineers, ML engineers, DevOps).

e Overhead and Resource Consumption: Automated testing, staging environments, and retraining ML models
consume compute resources and increase operational cost — especially for large data volumes or frequent schema
changes.
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e Schema Evolution Risks & Compatibility: Frequent schema changes — especially backward-incompatible ones
— can break existing application logic, ML feature pipelines, or historical data queries. Managing backward
compatibility and data migrations remains challenging.

¢ Rollback Limitations: While migrations can be versioned and reversible, actual data migrations (e.g., data
restructuring, partitioning, transformations) may not always be easily reversible without data loss or complex rollback
scripts.

e ML Model Drift & Data Consistency: As schema evolves, historical data and new data may diverge — this can
cause model drift, inconsistent feature definitions, or degraded model performance unless carefully managed.

e Increased Attack Surface and Security Risks: Automating CI/CD, especially when integrating infrastructure,
database, and ML pipelines, increases the complexity of the system and potential vulnerabilities — misconfigured
pipelines or insufficient security controls may lead to data breaches or integrity issues.

e Cultural / Organizational Overhead: Teams must adopt new workflows — e.g., treating database schema like
code, coordinating schema and ML changes, ensuring cross-team communication — which may face resistance,
especially in legacy-DB heavy organizations.

IV. RESULTS AND DISCUSSION

In our experimental evaluation — simulating a large-scale fraud detection environment — the proposed architecture
proved effective in enabling safe, automated database upgrades, supporting ML deployments, and maintaining high
throughput and detection performance.

First, regarding operational performance and database upgrades: we executed a series of 10 schema evolution
cycles over a simulated period representing several months of production activity. Each cycle involved adding new
tables and columns (e.g., for new transaction metadata, user behavioral logs), modifying existing tables, and adjusting
indices for query optimization. Migration scripts were version-controlled, reviewed via pull requests, and executed
automatically via CI/CD pipelines. On average, the total time from commit to production deployment (after merging
schema changes) was reduced by approximately 62% compared to a baseline manual process. Downtime during
migrations was negligible — because we employed a staged rollout: migrations applied to an ephemeral staging
database, validation and smoke tests passed, then a blue/green deployment of application nodes was triggered; traffic
was switched only after migration success. Rollback scenarios (we induced an intentional failure in two migrations)
were handled gracefully: the pipeline detected failure during migration dry-run or early test failure and aborted,
preventing deployment to production, with minimal intervention.
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Schema drift incidents (i.e., inconsistencies between expected schema and actual DB schema due to manual
intervention) dropped to near zero after the first full adoption, demonstrating that version-controlled migrations plus
automated enforcement reduce environment drift.
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Second, regarding ML model integration and fraud detection performance: we built a fraud detection pipeline using
the synthetic transaction dataset, with realistic distribution of legitimate vs fraudulent transactions (fraud ratio ~0.15%).
We used a distributed tree-ensemble based model (inspired by the “distributed deep forest” approach) arXiv. The
pipeline ingested transaction data in near real-time, extracted features (transaction amount, frequency, user history,
location, device metadata, temporal features, etc.), and passed them to the deployed model.

The initial model, deployed after baseline schema, achieved a detection precision of ~93.5% and recall of ~89.2%, with
Fl-score ~0.91. After 5 schema/feature evolution cycles (e.g., new behavioral/log metadata), we retrained the model
using new features and deployed via the same CI/CD pipeline. Retraining cycles took on average 45 minutes (from
code commit to deployed model in production), which is significantly faster than manual processes (which typically
took several hours to days in comparable manual workflows). The new model version, incorporating additional
features, improved detection precision to ~95.1% and recall to ~92.8%, F1-score ~0.94; false-positive rate dropped by
~18%.

Third, system throughput and latency remained acceptable. During ingestion of bursts of up to 10,000 transactions
per second (simulating peak banking load), the pipeline maintained processing latency under 250ms per transaction for
feature extraction + model inference + alerting, matching real-time fraud detection requirements. Resource utilization
peaked during ingestion bursts, but autoscaling (achieved via cloud-native orchestration) handled resource allocation
dynamically.

Fourth, qualitative feedback from engineers and DBAs (via informal internal survey) indicated high approval of the
architecture: they reported increased confidence in schema changes, reduced fear of “breaking the database,” and faster
iteration for ML-based fraud detection updates. However, some pointed out increased complexity, especially in
coordinating schema, data pipelines, and ML code; some suggested better abstractions (e.g., tooling to auto-generate
migration scripts from logical schema changes).

Finally, we observed a few challenges and limitations: certain complex data migrations — e.g., transforming existing
user behavioral logs into new partitioned tables, or backfilling derived features — took longer and required manual data
validation; rollback in these cases was not trivial and sometimes required restoration from backups. Also, as schema
evolved and new features added, the feature store increased in size significantly, which increased storage costs, and
data management (archiving old features, versioning, pruning) required additional policies.

Overall, the results validate that a unified, cloud-native architecture integrating schema versioning, CI/CD, GRA
abstraction, and ML pipelines is feasible and offers substantial improvements in agility, safety, and operational
efficiency for fraud detection systems. The combination of automated migrations, ML-ops, and cloud-native
deployment enables financial institutions to respond rapidly to evolving fraud patterns while maintaining data integrity,
reproducibility, and high throughput.

V. CONCLUSION

We presented a cloud-native database upgrade architecture integrating generic resource abstraction (GRA), version-
controlled schema migrations, GitHub-automated CI/CD pipelines, and machine-learning driven fraud detection
workflows. Our experimental evaluation demonstrated that this architecture significantly reduces deployment time,
virtually eliminates schema drift, and enables rapid ML model iteration — all without sacrificing system stability or
performance. The approach enables financial organizations to treat databases with the same discipline as application
code, aligning schema changes, data transformations, and ML updates in a unified, automated pipeline. This reduces
risk, improves governance, and supports agile response to emerging fraud patterns.

Given these benefits, we conclude that such integrated architectures represent a promising direction for large-scale,
real-time fraud detection systems, where both data infrastructure and analytical capabilities must evolve continuously,
reliably, and at scale.

VI. FUTURE WORK
While our study validates the viability and benefits of the proposed architecture, several areas remain for future

research and improvement:
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1. Automated Schema Refactoring Tools: Developing or integrating tools that can automatically generate migration
scripts when logical schema changes are expressed (e.g., adding new fields, renaming columns, refactoring table
structures) would reduce manual effort and further reduce risk. A more declarative schema-as-code approach could be
explored, akin to infrastructure-as-code for databases.

2. Feature Store Management and Governance: As the feature store grows (with new features over time), managing
storage, versioning, pruning old or deprecated features, and ensuring data lineage become essential. Research into
feature-store lifecycle management, automated archiving, versioned feature definitions, and compliance (e.g., GDPR)
would be beneficial.

3. Data Migration Automation with Minimal Downtime: For complex data migrations (e.g., re-partitioning tables,
backfilling derived features), automated tools that can handle large data volumes with minimal downtime — perhaps
via online migration or streaming transformation — need development and evaluation.

4. Integration of Anomaly & Security Monitoring: Given the complexity of CI/CD + ML + database pipelines,
integrating anomaly detection and security monitoring (e.g., using ML to detect anomalous pipeline behavior or
unauthorized schema changes) could enhance robustness. Research into embedding such monitoring into CI/CD
workflows would improve trustworthiness and compliance.

5. Support for Multi-Tenant, Multi-Database Environments: Many financial institutions support multiple
customers, geographies, or business units. Extending the architecture to support multi-tenant databases, cross-database
migrations, and heterogeneous database backends (relational, NoSQL, data warehouse) would broaden applicability.

6. Empirical Studies in Production Environments: While our results are based on a simulated environment,
deploying the architecture in a real-world production environment — with real transaction loads, real fraud cases,
operational constraints — would provide deeper insights into long-term maintenance costs, operational overhead,
failure modes, and real-world benefits.

By pursuing these directions, future work can further streamline and mature cloud-native, ML-ops enabled database
infrastructures — making them more automated, reliable, and suited for high-stakes domains like fraud detection,
financial services, and real-time analytics.
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