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ABSTRACT: The rapid advancement of deep learning has led to increasingly complex neural network architectures, 

often requiring substantial human expertise, iterative experimentation, and domain-specific knowledge to achieve 

optimal performance. Traditional architecture design approaches, including manual tuning and grid- or random-search-

based hyperparameter optimization, are computationally expensive and do not scale well with the increasing diversity 

of tasks and datasets. To address these limitations, this research introduces Self-Evolving Neural Networks (SENN), a 

meta-learning framework designed for autonomous architecture optimization that enables neural networks to self-

improve, adapt, and evolve with minimal human intervention. SENN integrates principles of meta-learning, 

evolutionary computation, reinforcement learning, and differentiable neural architecture search (NAS) to create a 

unified, self-evolving system capable of discovering optimal architectures dynamically. 

 

The proposed framework operates at two hierarchical levels. At the meta-level, the system learns how to generate, 

mutate, and refine neural architectures through a policy-driven controller trained using reinforcement learning. This 

controller optimizes architecture configurations by continuously interacting with evaluation environments, receiving 

performance feedback, and updating its search strategies. At the base-level, candidate architectures—composed of 

layers, activation functions, connectivity patterns, and hyperparameters—are instantiated and trained on downstream 

tasks. Their performance metrics are collected to inform the meta-learner, enabling iterative self-evolution. SENN’s 

meta-learning component encodes knowledge about successful architectural patterns, learning to generalize across tasks 

and datasets, thereby reducing search redundancy and improving exploration efficiency. 

 

KEYWORDS: Self-evolving neural networks, meta-learning, neural architecture search, autonomous optimization, 

evolutionary computation, reinforcement learning, differentiable NAS, lifelong learning. 

 

I. INTRODUCTION 

 

Deep learning has transformed the landscape of artificial intelligence (AI), enabling breakthroughs across diverse 

domains such as computer vision, natural language processing, robotics, and multimodal systems. Despite these 

advancements, designing an optimal neural network architecture remains a significant challenge. Traditionally, 

architecture development demands extensive manual intervention, expert intuition, and computationally intensive trial-

and-error experimentation. The search space of possible architectures is vast, spanning hyperparameters, layer types, 

connectivity patterns, activation functions, optimization algorithms, and regularization techniques. As the complexity of 

tasks increases, manually identifying or engineering suitable architectures becomes not only inefficient but increasingly 

impractical. This challenge has motivated the search for automated, scalable, and intelligent solutions for neural 

architecture optimization. 

 

In recent years, automated machine learning (AutoML) has emerged as a promising direction to reduce human 

involvement in model design. Neural Architecture Search (NAS) methods, reinforcement learning-based controllers, 

evolutionary algorithms, and differentiable search strategies have collectively contributed to this automation. However, 

these methods face limitations: many require enormous computational resources, often spanning thousands of GPU 

hours; others lack adaptability and generalizability across tasks. Moreover, most existing NAS techniques operate in a 

static search setting, where the architecture is searched once and then fixed. They do not possess the inherent capability 

to continuously evolve, learn from past architectural decisions, or adapt autonomously as new data emerges or tasks 

evolve. These limitations highlight the need for a self-directed, intelligent system for architecture optimization. 
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This research introduces Self-Evolving Neural Networks (SENN)—a meta-learning-driven framework capable of 

autonomously discovering, modifying, and refining neural architectures. SENN aims to transcend traditional automated 

design approaches by equipping the system with the ability to learn how to improve itself over time. Rather than 

manually defining architecture search strategies, SENN uses meta-learning to internalize knowledge about architectural 

patterns and performance outcomes, enabling it to evolve architectures with minimal human supervision. This ability to 

self-evolve positions SENN as an important advancement toward building fully autonomous AI systems. 

The key objectives of this research include: 

1. Developing a meta-learning-driven framework capable of learning to optimize neural network architectures 

autonomously. 

2. Integrating reinforcement learning, evolutionary computation, and differentiable search to create an efficient hybrid 

architecture optimization system. 

3. Enabling dynamic self-evolution of architectures to adapt to changing tasks and data. 

4. Reducing computational overhead while improving search effectiveness compared to conventional NAS techniques. 

5. Demonstrating transferability and generalization of evolved architectures across diverse domains. 

 

II. LITERATURE REVIEW 

 

The field of neural architecture optimization has witnessed substantial advancements over the past decade, driven 

primarily by the need to reduce manual intervention and accelerate model development. The literature spans several 

interrelated domains—Neural Architecture Search (NAS), evolutionary algorithms, reinforcement learning-based 

architecture optimization, differentiable search techniques, and meta-learning. This section reviews these foundational 

areas and highlights how the proposed SENN framework builds upon and extends prior work. 

 

1. Early Approaches to Architecture Design 

Historically, neural network architectures were hand-crafted by domain experts. Pioneering models such as LeNet, 

AlexNet, VGG, and LSTM emerged from extensive experimentation and human intuition. Although these architectures 

were successful, their design process was labor-intensive, time-consuming, and lacked scalability. As deep learning 

applications expanded, the limitations of manual design motivated the development of automated approaches. 

 

2. Neural Architecture Search (NAS) 

NAS emerged as a promising technique to automate the architecture design process. Zoph and Le (2017) introduced an 

RL-based NAS controller capable of generating architectures and receiving performance-based rewards. Their 

approach produced state-of-the-art models but required massive computational resources, often exceeding thousands of 

GPU hours. Subsequent works focused on improving efficiency. 

 ENAS (Efficient NAS): Pham et al. (2018) reduced computational overhead through parameter sharing, allowing 

multiple candidate architectures to reuse weights. 

 NASNet and AmoebaNet: Demonstrated the potential of RL and evolutionary algorithms in discovering 

competitive architectures. 

Despite significant achievements, classical NAS methods suffer from scalability challenges, resource constraints, and 

limited adaptability to new tasks. 

 

3. Evolutionary Algorithms for Architecture Optimization 

Evolutionary computation has played an influential role in optimizing neural networks. Algorithms such as NEAT 

(NeuroEvolution of Augmenting Topologies) demonstrated the ability to evolve both architectures and weights. Later, 

Large-Scale Evolution (Real et al., 2017) used genetic operators to evolve convolutional architectures, producing 

models that rivaled human-designed networks. Evolutionary methods excel in exploring diverse search spaces and 

promoting architectural novelty but often lack gradient-based refinement, leading to slower convergence. 

 

4. Differentiable NAS and Gradient-Based Search 

Differentiable NAS (DARTS) revolutionized the field by making the architecture search space continuous and 

differentiable. This allowed gradient descent to optimize architectural parameters efficiently. Variants such as P-

DARTS, ProxylessNAS, and FBNet introduced additional improvements in stability, generalization ability, and device-

aware optimization. Differentiable methods drastically reduced search time but introduced challenges related to search 

space relaxation, bias toward simpler architectures, and susceptibility to overfitting. 
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5. Reinforcement Learning and Policy-Based Optimization 

RL-based NAS methods treat architecture generation as a sequential decision-making problem. Controllers—usually 

RNNs—output architectural decisions, receive rewards, and update policies. These methods excel in learning patterns 

about which architectural choices yield strong performance. However, RL-based NAS becomes computationally 

expensive when the search space is large or when full training of candidate models is required for evaluation. 

 

6. Meta-Learning for Architecture Optimization 

Meta-learning focuses on enabling models to learn how to learn. In architecture optimization, meta-learning helps 

systems generalize search strategies across tasks, improving search efficiency. Research in this domain includes: 

 MetaNAS: Using meta-learning to predict architectural performance without exhaustive training. 

 Learning to Optimize: Using meta-optimizers to learn better initialization and hyperparameter strategies. 

 Few-shot NAS: Applying meta-learning to reduce the number of samples needed for architecture evaluation. 

Meta-learning's ability to encode cross-task knowledge provides the foundation for self-evolving systems, making it 

highly relevant for SENN. 

 

7. Hybrid and Multi-Objective NAS Approaches 

Real-world applications require balancing multiple objectives, such as accuracy, latency, energy efficiency, and 

robustness. Multi-objective NAS approaches (e.g., MnasNet, DPP-Net) integrate hardware-aware metrics into the 

search process. Hybrid NAS frameworks combine RL, evolutionary search, and gradient-based methods to leverage 

complementary strengths. SENN draws inspiration from these hybrid strategies to create a unified, adaptive framework. 

 

8. Lifelong Learning and Self-Adaptive Architectures 

Research in continual learning, online learning, and self-adaptive systems highlights the importance of dynamic model 

adjustment. Techniques such as dynamic routing, growth and pruning algorithms, and hypernetwork-driven adaptation 

provide insight into how models can evolve over time. While these works demonstrate adaptability at the weight or 

module level, SENN extends this adaptability to the entire architecture. 

 

9. Limitations of Existing Literature 

Several limitations in the current literature motivate the development of SENN: 

 NAS methods are often static, lacking the ability to evolve architectures after deployment. 

 Most approaches require extensive computation, making them unsuitable for real-time or resource-limited 

scenarios. 

 Transferability across tasks remains limited. 

 Current methods do not fully exploit multi-level learning signals (meta-learning + RL + evolutionary search). 

 

10. Contribution of SENN in Context of Literature 

SENN addresses these gaps by: 

 Introducing a meta-learning-based architect that internalizes cross-task architectural knowledge. 

 Combining RL, evolutionary search, and differentiable optimization into a single unified system. 

 Enabling continuous self-evolution, even after deployment. 

 Supporting multi-objective and resource-aware architectural optimization. 

Thus, SENN builds upon foundational advancements in NAS, meta-learning, and evolutionary computation while 

advancing the field toward fully autonomous architecture design. 

 

III. RESEARCH METHODOLOGY 

 

The research methodology for the proposed Self-Evolving Neural Networks (SENN) framework is structured into five 

major components: (1) System Architecture Design, (2) Meta-Learning Controller, (3) Architecture Generation and 

Evaluation Process, (4) Evolutionary Refinement, and (5) Multi-Objective Optimization. Each component works 

together to enable autonomous, dynamic, and efficient neural architecture evolution. 

 

1. System Architecture Overview 

The SENN framework follows a hierarchical design with two functional levels: 

A. Meta-Level (Architecture Generator) 

This level acts as a ―neural architect.‖  

It includes:  
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 A Reinforcement Learning Controller that generates architectural decisions (e.g., number of layers, block types, 

activation functions). 

 A Meta-Learner that updates internal parameters based on architecture performance across tasks. 

 A Knowledge Bank containing learned prior information about architectural patterns. 

 

B. Task-Level (Architecture Evaluator) 

At this level: 

 Candidate architectures produced by the meta-level are instantiated. 

 They are trained on task-specific datasets. 

 Performance metrics (accuracy, latency, FLOPs, robustness) are recorded. 

 Feedback is sent back to the meta-level for improvement. 

This two-level architecture allows SENN to continuously evolve and adapt its architecture strategies. 

 

2. Meta-Learning Controller Module 

The controller uses Reinforcement Learning, where each action corresponds to selecting an architecture component 

(e.g., convolution size, attention block, normalization type). 

 

RL Components 

 State: Current architecture design trajectory. 

 Action: Choosing the next architectural element. 

 Reward: Performance score of the resulting model (weighted accuracy, latency, etc.). 

 Policy Update: Using Proximal Policy Optimization (PPO) or REINFORCE. 

 

Meta-Learning Mechanism 

The controller learns: 

 Which architectural patterns perform better across multiple tasks. 

 How to generalize architecture design rules. 

 How to balance exploration (new structures) vs exploitation (known good architectures). 

This enables autonomous self-improvement over time. 

 

3. Architecture Generation & Evaluation Pipeline 

This step follows five sub-stages: 

Step 1: Sampling Candidate Architectures 

The controller generates multiple candidate architectures per iteration. 

Each architecture may vary in: 

 Depth (number of layers) 

 Layer types (CNN, LSTM, Transformer block) 

 Connectivity (residual, dense, skip) 

 Activation (ReLU, GELU, Swish) 

 Kernel sizes, embedding sizes, attention heads 

 

Step 2: Parameter Sharing (Efficient Training) 

To reduce computational cost: 

 SENN uses shared weights for candidate architectures during search. 

 Only top-performing architectures undergo full training. 

 

Step 3: Initial Training & Validation 

Each candidate model is trained for few epochs to estimate performance quickly. 

Metrics recorded: 

 Validation accuracy 

 FLOPs (computational complexity) 

 Latency on target hardware 

 Memory requirements 

 Robustness score (adversarial noise tolerance) 
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Step 4: Reward Assignment 

A multi-objective weighted scoring function is used: 

Reward = 𝛼 ⋅ 𝐴𝑐𝑐 + 𝛽 ⋅ (1/𝐹𝐿𝑂𝑃𝑠) + 𝛾 ⋅ (1/𝐿𝑎𝑡𝑒𝑛𝑐𝑦) + 𝛿 ⋅ 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 
Weights (α, β, γ, δ) are chosen based on task requirements. 

 

5. Multi-Objective Optimization 

SENN is designed to optimize: 

 Accuracy 

 Efficiency (latency, FLOPs) 

 Energy usage 

 Model size 

 Robustness to noise 

 Generalization to new tasks 

A Pareto Frontier approach is used to identify optimal trade-off architectures. 

 

6. Experimental Setup 

Datasets 

SENN is evaluated on: 

 

Domain Dataset Purpose 

Vision CIFAR-10, CIFAR-100 Classification 

NLP IMDB, SST-2 Sentiment analysis 

Multimodal Flickr30K Image-text retrieval 

 

Baselines Compared 

 Manual Architectures (ResNet, MobileNet) 

 NAS Methods (NASNet, DARTS, ENAS) 

 Evolutionary Models (AmoebaNet) 

 

Hardware 

 NVIDIA A100 GPUs 

 TPU v3 (for latency evaluation) 

 

IV. RESULTS 

 

The SENN framework is compared with existing NAS and manually designed models across multiple domains. 

1. Performance Comparison Table 

 

Table 1: Classification Accuracy and Efficiency Comparison 

 

Model CIFAR-10 Accuracy (%) FLOPs (Billion) Latency (ms) Robustness (%) 

ResNet-50 94.1 4.1 7.2 63 

MobileNetV2 92.7 0.6 4.1 57 

DARTS 97.0 3.3 6.8 68 

ENAS 96.2 2.8 6.1 65 

AmoebaNet 96.7 3.9 7.4 66 

SENN (Proposed) 97.9 2.1 3.9 73 

 

Explanation of Table 1 

 Accuracy: SENN achieves the highest accuracy (97.9%), outperforming both classical NAS methods and hand-

designed architectures. 

 FLOPs: SENN reduces computation to 2.1B FLOPs, showing improved efficiency compared to most baselines. 

 Latency: SENN has the lowest latency (3.9 ms), demonstrating suitability for real-time deployment. 

 Robustness: SENN exhibits the strongest robustness score (73%), showing improved adversarial tolerance due to 

architecture optimization. 
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This shows SENN optimizes accuracy and efficiency together. 

 

2. Multi-Objective Optimization Performance 

 

Table 2: Pareto-Optimal Architecture Trade-offs 

 

Architecture Variant Accuracy (%) Model Size (MB) Energy Use (J) 

SENN-Lite 95.4 8.3 1.9 

SENN-Balanced 97.2 15.6 3.1 

SENN-Optimized 97.9 18.2 3.4 

SENN-Heavy 98.1 23.9 4.8 

 

Explanation of Table 2 

 SENN-Lite: Best suited for low-power devices like mobiles. 

 SENN-Balanced: Offers strong accuracy with moderate resources. 

 SENN-Optimized (Main Model): Preferred for general-purpose tasks. 

 SENN-Heavy: Highest accuracy but higher resource consumption. 

This demonstrates that SENN produces a spectrum of architectures based on hardware or task constraints. 

 

3. Transfer Learning Results 

 

Table 3: Architecture Transferability Across Tasks 

 

Target Task Baseline Accuracy (%) SENN Accuracy (%) Improvement (%) 

IMDB Sentiment 90.1 93.4 +3.3 

SST-2 92.8 95.6 +2.8 

Flickr30K Retrieval 78.2 82.9 +4.7 

 

Explanation of Table 3 

 SENN architectures show excellent transferability. 

 They generalize better due to meta-learning-driven search. 

 Improvements range from +2.8% to +4.7% across domains. 

 

V. CONCLUSION 

 

The emergence of increasingly complex neural network architectures and the expanding diversity of AI applications 

have heightened the demand for scalable, autonomous, and efficient architecture optimization techniques. Traditional 

methods—whether relying on human expertise, heuristic-driven modifications, or static Neural Architecture Search 

(NAS)—struggle to meet modern requirements of adaptability, computational efficiency, and cross-domain 

generalization. In this context, the proposed Self-Evolving Neural Networks (SENN) framework introduces a 

transformative paradigm by enabling neural networks to autonomously design, refine, and evolve their own 

architectures using meta-learning principles. 

 

In conclusion, the Self-Evolving Neural Networks framework offers a powerful and versatile approach to architecture 

optimization, aligning closely with the long-term vision of AI systems that continuously learn, adapt, and improve 

without human intervention.  
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