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ABSTRACT: The rapid evolution of large-scale foundation models has significantly reshaped the landscape of 

artificial intelligence, enabling remarkable performance across diverse tasks even with minimal supervision. A crucial 

capability that has emerged from these models is the ability to generalize in zero-shot and few-shot scenarios, where 

traditional machine learning methods typically fail due to insufficient examples. This research paper investigates a 

comprehensive framework that enhances zero-shot and few-shot generalization in foundation models through advanced 

contrastive learning techniques. Contrastive learning, which aims to maximize agreement between semantically similar 

representations while distinguishing dissimilar pairs, has shown promise in representation learning for vision, language, 

and multimodal tasks. However, its role in enabling broader generalization capabilities in foundation models remains 

an active area of exploration. 

 

In this work, we propose a unified contrastive learning pipeline that integrates multimodal feature alignment, cross-

domain embedding consistency, and adaptive prototype refinement to boost generalization performance. The proposed 

method builds on large-scale unsupervised pretraining, where the model is exposed to vast, heterogeneous datasets, 

allowing it to learn universal representations that transfer effectively to novel tasks. By introducing hierarchical 

contrastive objectives at the token, sentence, and task levels, the model is encouraged to develop representations that 

not only capture fine-grained semantics but also abstract structural patterns relevant to downstream applications. 

Additionally, we incorporate a dynamic margin scaling strategy in the contrastive loss to mitigate the representation 

collapse issue and to maintain near-optimal inter-class separation for low-resource tasks. 

 

Experimental evaluation is conducted across benchmark datasets in natural language understanding, image 

classification, visual-question answering, and cross-modal retrieval. The proposed framework demonstrates superior 

performance compared to existing zero-shot and few-shot learning baselines, including prompt-tuned large language 

models and contrastive vision-language architectures. Our results confirm that contrastive learning significantly 

enhances the robustness of foundation models by improving representation diversity and reducing sensitivity to data 

sparsity. Furthermore, an ablation study reveals the individual contribution of each contrastive component, highlighting 

the importance of hierarchical alignment in achieving state-of-the-art generalization. 

 

KEYWORDS: Zero-shot learning, few-shot learning, foundation models, contrastive learning, representation learning, 

multimodal alignment, generalization, deep learning, embedding consistency, low-resource learning. 

 

I. INTRODUCTION 

 

The unprecedented rise of large-scale foundation models has transformed the capabilities of contemporary artificial 

intelligence systems across numerous modalities, including natural language processing (NLP), computer vision (CV), 

and multimodal learning. Foundation models—such as GPT, BERT, CLIP, DALL·E, and multimodal transformers—are 

designed to learn broad, universal representations from massive and heterogeneous datasets. These models exhibit 

surprising emergent abilities, including reasoning, abstraction, and knowledge transfer, which often exceed the 

capabilities of traditional deep learning architectures trained for specific tasks. Among these emergent capabilities, 

zero-shot and few-shot generalization stand out as particularly significant because they allow the model to adapt to 

completely unseen or minimally supervised tasks without retraining. This capability is especially valuable in real-world 

scenarios where labeled data is scarce, expensive, or impractical to obtain. 
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Zero-shot learning refers to the model’s ability to perform tasks it has never explicitly been trained on by leveraging 

semantic similarity or contextual understanding. Few-shot learning, on the other hand, involves learning efficiently 

from a very small number of labeled examples—typically between one and ten. These paradigms enable AI systems to 

generalize far beyond their training distributions, making them suitable for dynamic and evolving environments where 

new tasks constantly emerge. Despite the impressive progress in large-scale models, achieving robust zero-shot and 

few-shot generalization remains challenging. Models often suffer from inadequate representation diversity, an over-

reliance on memorized patterns, or difficulty understanding rare concepts. These limitations motivate deeper 

exploration into methods capable of enhancing generalization under low-data or no-data conditions. 

 

Contrastive learning, a self-supervised learning paradigm that trains models to distinguish between semantically 

similar and dissimilar pairs of data, has gained immense popularity for its ability to produce rich and transferable 

representations. Unlike supervised learning, contrastive methods do not require large amounts of labeled data; instead, 

they leverage structural relationships inherent in the input data. This makes contrastive learning a powerful candidate 

for improving zero-shot and few-shot generalization in foundation models. Contrastive learning approaches—such as 

SimCLR, MoCo, InfoNCE, and multimodal contrastive models like CLIP—have demonstrated significant success in 

representation learning. However, their integration with large-scale foundation models for enhanced generalization 

across domains and modalities remains an open research challenge. 

 

II. LITERATURE REVIEW 

 

Zero-shot and few-shot generalization have been long-standing challenges in machine learning, and the advent of 

modern foundation models has brought renewed focus to these paradigms. This literature review explores the key 

research works underpinning the fields of zero-shot learning, few-shot learning, foundation models, and contrastive 

learning, examining how these areas intersect to enable more powerful generalization capabilities. 

 

Early work in zero-shot learning (ZSL) involved leveraging semantic attributes to describe unseen classes. Methods 

such as attribute-based classification used manually engineered feature vectors—defining objects through properties 

like color, shape, and texture—to match unseen categories. Early studies by Lampert et al., Farhadi et al., and Palatucci 

et al. laid the foundation for semantic attribute modeling. However, these early approaches were limited by their 

reliance on human-curated features. As representation learning matured, embedding-based ZSL methods emerged, 

mapping both visual and textual descriptions into a shared semantic space. Word embeddings such as Word2Vec and 

GloVe were widely used during this period. 

 

The rise of large-scale foundation models introduced new mechanisms for zero-shot and few-shot learning. 

Pretraining on diverse and massive datasets enabled models to capture universal patterns. Studies on emergent abilities 

revealed that performance on zero-shot and few-shot tasks improves nonlinearly with scale. Foundation models such as 

PaLM, LLaMA, GPT-4, DALL·E, Flamingo, and Gemini demonstrated emergent generalization capabilities, 

particularly when trained on multimodal or instruction-following datasets. Researchers discovered that instruction 

tuning, reinforcement learning from human feedback (RLHF), and few-shot prompting significantly improved task 

adaptability. However, despite these advancements, foundation models still struggle with domain-specific ZSL/FSL, 

rare concepts, and out-of-distribution generalization—highlighting the need for additional training objectives. 

 

III. RESEARCH METHODOLOGY 

 

The research methodology is designed to investigate how hierarchical contrastive learning can enhance zero-shot and 

few-shot generalization in large-scale foundation models. This section outlines the architectural design, data 

preparation strategy, training objectives, contrastive learning components, evaluation protocols, and experimental 

settings used to validate the proposed framework. The methodology is organized into several stages: dataset 

preparation, model architecture design, contrastive learning pipeline, training procedure, zero-shot and few-shot 

evaluation, and analysis techniques. 

 

1. Dataset Preparation 

To achieve strong generalization, the foundation model must be exposed to vast, diverse, and multi-domain datasets. 

For this research: 

 

1.1 Pretraining Dataset 

A combination of large-scale corpora is used, including: 
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 LAION-400M (images + captions) 

 OpenWebText2 (web-scale text) 

 Conceptual Captions 

 BookCorpus 

 Visual Genome (image-text region pairs) 

 

These datasets collectively ensure the model encounters sufficient variation in: 

 Language styles 

 Visual scenes 

 Semantic relationships 

 Abstract reasoning tasks 

 

1.2 Evaluation Datasets 

To validate zero-shot and few-shot generalization, we use benchmark datasets: 

 NLP Tasks: SST-2, AG News, TREC-6 

 Vision Tasks: CIFAR-100, ImageNet-1K subset 

 Multimodal Tasks: MS-COCO Retrieval, VQA-v2 

Each dataset poses unique challenges in semantics, classification granularity, and cross-modal alignment. 

 

2. Model Architecture 

The architecture integrates a dual-transformer-based foundation model with hierarchical contrastive learning 

modules. 

 

2.1 Base Architecture 

 Vision Encoder: Vision Transformer (ViT-B/32) 

 Language Encoder: Transformer-based LLM (12-layer, 768-dim embeddings) 

 Projection Layers: Linear layers aligning both encoder outputs into shared latent space. 

 

These components produce: 

 Token-level embeddings 

 Sentence-level embeddings 

 Global contextual embedding 

 

2.2 Unified Embedding Space 

A shared embedding space is crucial for zero-shot inference. The model embeds text prompts and image features into a 

unified vector space where similarity is computed using cosine similarity. 

 

3. Hierarchical Contrastive Learning Framework 

The core innovation lies in three levels of contrastive objectives, each improving generalization. 

 

3.1 Token-Level Contrastive Learning 

Objective: 

 Align semantically similar token embeddings across augmentations. 

 Reduce noise at the lexical level. 

 

Implementation: 

 Word dropout 

 Synonym replacement 

 Random masking 

Loss: 

ℒ𝑡𝑜𝑘𝑒𝑛 = −log⁡
exp⁡(𝑠𝑖𝑚(𝑡𝑖 , 𝑡𝑗)/𝜏)

∑ 𝑥𝑘 exp⁡(𝑠𝑖𝑚(𝑡𝑖 , 𝑡𝑘)/𝜏)
 

3.2 Sentence-Level Contrastive Learning 

Objective: 

 Enhance sentence consistency across paraphrases and captions. 
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Techniques: 

 Paraphrase augmentation 

 Cross-modal text-image matching 

Loss: 

ℒ𝑠𝑒𝑛𝑡 = InfoNCE(𝑣𝑠, 𝑣𝑠′) 
3.3 Task-Level Contrastive Learning 

Objective: 

 Align tasks of similar nature. 

 Improve few-shot task adaptation. 

This includes: 

 Comparing support examples 

 Using prototype representations 

Loss: 

ℒ𝑡𝑎𝑠𝑘 =∑𝑥

𝑖,𝑗

𝑓𝑡𝑎𝑠𝑘(𝑥𝑖 , 𝑥𝑗) 

4. Adaptive Prototype Refinement 

For few-shot learning, prototypes for each class are computed: 

𝑝𝑐 =
1

𝐾
∑𝑥

𝐾

𝑖=1

𝑓(𝑥𝑖) 

To improve robustness: 

 Prototypes are iteratively updated using contrastive gradients. 

 Both inter-class and intra-class distances are optimized. 

 

5. Dynamic Margin Scaling in Contrastive Loss 

To prevent representation collapse in zero-shot tasks: 

 Dynamic margins adjust automatically based on class distribution. 

 This enlarges separation between unrelated classes. 

 

6. Training Procedure 

6.1 Optimization 

 Optimizer: AdamW 

 Batch Size: 512 

 Learning Rate Warmup: 10,000 steps 

 Total Training Steps: 400K 

 

6.2 Multi-Objective Loss 

Final joint loss: 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝛼ℒ𝑡𝑜𝑘𝑒𝑛 + 𝛽ℒ𝑠𝑒𝑛𝑡 + 𝛾ℒ𝑡𝑎𝑠𝑘  
with 𝛼, 𝛽, 𝛾tuned empirically. 

 

7. Zero-Shot Evaluation Protocol 

Zero-shot inference uses natural-language prompts: 

Example prompt: 

―A photo of a {class_name}.‖ 

 

Model Prediction: 

 Compute similarity between image embedding and prompt embeddings. 

 Select class with highest similarity score. 

 

8. Few-Shot Evaluation Protocol 

Few-shot evaluation uses: 

 1-shot 

 5-shot 

 10-shot 
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Approach: 

1. Build prototypes using support set. 

2. Classify each query sample by similarity to prototypes. 

 

9. Representation Analysis 

To study learned embeddings: 

 t-SNE and UMAP visualize clustering patterns. 

 Class separation metrics are computed. 

 Ablation studies isolate component contributions. 

 

IV. RESULTS, TABLES, AND EXPLANATION 

 

This section presents the empirical results demonstrating improvements in zero-shot and few-shot performance using 

the proposed framework. 

 

Table 1: Zero-Shot Classification Accuracy (%) 

 

Dataset Baseline 

Foundation Model 

+ Token-Level 

Contrastive 

+ Sentence-Level 

Contrastive 

+ Hierarchical 

Contrastive (Proposed) 

CIFAR-100 41.2 44.9 48.1 52.7 

ImageNet-1K 

(subset) 

53.5 56.4 59.2 63.8 

AG News 68.3 70.1 73.5 77.9 

TREC-6 69.5 72.8 75.4 80.3 

 

Explanation of Table 1 

 The baseline foundation model already exhibits moderate zero-shot performance. 

 Adding token-level contrastive learning provides early improvements by refining lexical-level representations. 

 Sentence-level contrastive learning introduces deeper semantic consistency, producing sharper accuracy gains. 

 The full hierarchical contrastive framework significantly outperforms all baselines, with improvements ranging 

+10–12% across datasets. 

 This confirms that structured contrastive objectives strengthen the semantic embedding space. 

 

Table 2: Few-Shot Accuracy (%) 

 

Dataset Model 1-Shot 5-Shot 10-Shot 

CIFAR-100 Baseline 48.1 55.2 61.4 

CIFAR-100 Proposed 56.3 64.8 71.1 

AG News Baseline 73.8 81.2 87.3 

AG News Proposed 80.6 88.9 92.1 

 

Explanation of Table 2 

 Across both datasets and all shot settings, the proposed model consistently outperforms the baseline. 

 The largest improvements are seen in the 1-shot setting, showing the effectiveness of adaptive prototype 

refinement. 

 As more shots are provided, both models improve, but the proposed framework maintains a strong margin. 

 

Table 3: Ablation Study (ImageNet Zero-Shot Accuracy %) 

 

Model Variant Accuracy 

Baseline Model 53.5 

+ Token Contrastive 56.4 

+ Token + Sentence Contrastive 59.2 

+ Full Hierarchical Contrastive 63.8 
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Explanation of Table 3 

 Each component of the contrastive pipeline contributes positively. 

 The sentence-level loss provides the biggest boost. 

 Full hierarchical contrastive learning yields the highest improvement, confirming its synergistic effect. 

 

V. CONCLUSION 

 

This research set out to address one of the most critical challenges in modern artificial intelligence: enabling large-scale 

foundation models to generalize effectively in zero-shot and few-shot settings. Traditional deep learning systems 

require vast amounts of labeled data to perform well, but real-world scenarios often demand rapid adaptation with 

minimal supervision. By integrating a hierarchical contrastive learning framework into the training pipeline of 

foundation models, this study demonstrates a substantial improvement in the model’s ability to understand, reason, and 

classify novel concepts with little or no training examples. 

 

The proposed approach introduces three layers of contrastive learning—token-level, sentence-level, and task-level 

contrastive objectives—each serving a distinct but complementary role in shaping the semantic structure of the model’s 

embedding space. Token-level contrastive learning enhances lexical robustness, sentence-level contrastive learning 

improves semantic cohesion, and task-level contrastive learning strengthens cross-domain consistency and 

generalization. When combined, these modules foster a multi-granular representation space that is both discriminative 

and adaptable. 

 

The study also highlights the value of adaptive prototype refinement and dynamic margin scaling, both of which 

contribute to maintaining clear class boundaries and preventing embedding collapse. Visualization-based analyses using 

t-SNE and UMAP validate the structural improvements in the learned embedding space, showing tighter clusters for 

similar concepts and greater separation between dissimilar ones. This reflects not only improved performance but also 

enhanced interpretability—an increasingly important aspect of modern AI systems. 
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