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ABSTRACT: Mobile video streaming constitutes the majority of internet traffic on cellular networks, yet the
unpredictable nature of wireless links continues to challenge seamless playback. Traditional caching strategies (e.g.,
Least Recently Used and Least Frequently Used) respond only to past access patterns and often fail under real-time
variability such as handovers, jitter, and throughput swings. This paper presents a Machine Learning (ML)-based
predictive caching framework that proactively prefetches video segments by forecasting viewer intent and network
conditions. The approach combines behavioral and contextual features—watch sequences, genre affinity, session depth,
network bandwidth variance—and applies Random Forest and XGBoost classifiers to rank likely next requests.
Prefetching is executed when a confidence threshold is exceeded, constrained by device storage and instantaneous
throughput. Simulated experiments across 3G/4G/5G models demonstrate a 24% increase in cache hit ratio, 31%
reduction in startup latency, and 47% drop in rebuffering relative to heuristic caching. The contributions include (i) a
modular architecture deployable at the edge or client; (ii) an analysis of model trade-offs (accuracy vs. inference
latency); and (iii) a discussion of privacy and deployment considerations for real-world OTT pipelines.
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1. INTRODUCTION
The explosive growth of streaming media has redefined how digital content is consumed. Reports estimate that video
accounts for more than 80% of mobile network data. Despite deployment of advanced CDN and edge infrastructures,

the final leg—delivery to mobile devices over variable wireless links—remains the primary bottleneck to user
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experience. Conventional caching schemes depend on deterministic heuristics that neither anticipate user intent nor
account for network variability. An LRU cache may evict a soon-to-be-requested segment simply because it was
accessed earlier, whereas a learning-based model could predict that behavior from temporal correlations. The
emergence of ML techniques provides a pathway to model such correlations by analyzing playback logs, user behavior,
and contextual signals (time of day, device type, network type).

1.1 Background on Caching in Streaming Systems

Caching reduces origin traffic and latency by serving data from nearer nodes. In OTT streaming, caching typically
occurs at CDN edge, ISP-operated edge, and sometimes on-device. Mobile environments complicate heuristics due to
time-varying radio conditions, mobility, and device constraints.

1.2 Limitations of Heuristic Caching

Heuristic policies such as LRU and LFU ignore temporal intent transitions. A user binge-watching episodes exhibits
high probability of requesting the next episode—yet LRU might evict it. LFU overweights global popularity and
ignores session context and instantaneous network state.

1.3 Role of Machine Learning in Network Optimization

ML enables modeling of multi-dimensional context: historical watch sequences, session time-of-day, network variance,
and device capabilities. Supervised classifiers (Random Forest, XGBoost) and sequence models can predict the next
content request, transforming caching from reactive to proactive optimization.

1.4 Research Objectives

This study aims to: (i) design a modular predictive caching framework for edge/client deployment; (ii) quantify
accuracy and QOE gains relative to heuristic baselines; and (iii) examine inference latency, storage constraints, and
privacy considerations.

Il. RELATED WORK

Prior research on caching for video streaming spans rule-based heuristics, analytical models, and learning-based
strategies. Classical approaches optimize hit ratio under stationarity assumptions. Recent works apply ML to predict
popular objects, yet many target data-center or CDN layers rather than the mobile edge. Our work differs by focusing
on session-level prediction and deployability in bandwidth-constrained edge or on-device settings, with explicit
consideration of inference latency and prefetch waste.

1. SYSTEM ARCHITECTURE

3.1 Logical Architecture

The architecture integrates four layers: Data Acquisition, Feature Engineering, Prediction Engine, and Cache Control.
Telemetry flows from the mobile client to analytics; features are extracted; models score candidate segments for
prefetch; and the cache controller honors resource thresholds.

3.2 Component Functions

(a) Data Acquisition: collects session logs (content 1D, timestamps, bitrate, buffer level, network stats). (b) Feature
Engineering: computes temporal, behavioral, and network features. (c) Prediction Engine: produces ranked
probabilities of next segments. (d) Cache Control: executes prefetch/eviction decisions with high/low watermarks and
bandwidth guards.

3.3 Edge Deployment Considerations

Edge deployment reduces round-trip latency and origin traffic. Models must be compact (< 40 MB) and efficient
(inference < 0.8 s) to avoid competing with playback bandwidth. Prefetch occurs during idle windows to prevent
contention.
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Fig. 1 Predictive Caching Framework Architecture

Component Description Example Size/Latency

ML Model Random Forest (200 trees) 35 MB /0.7 s inference
Cache Buffer Prefetch Queue (top-N=3) 10 GB / dynamic thresholds
Telemetry Playback & network stats ~1-2 kB/s per session

Edge Node CDN PoP gateway Round-trip < 20 ms (typical)

V. METHODOLOGY

4.1 Data Simulation Pipeline

We synthesized 50,000 streaming sessions using a Poisson arrival process for users, log-normal throughput
distributions for 3G/4G/5G, and session-length distributions reflecting observed OTT patterns. Each session includes
20 x 5 s segments for a mix of live and on-demand content.

4.2 Feature Engineering
Temporal features: time since last view, hour-of-day; Behavioral: transition probabilities, genre affinity; Contextual:
device type, network variance. Numeric features are min—max scaled to [0,1]; categorical features are one-hot encoded.

4.3 Feature Formulas (examples)

Genre  affinity for user u and genre g: G(u,g) = N_view(u,g) [/ N_view(u,-)
Session depth: D = number of segments watched in current session
Bandwidth variance over window W: Var(b) = (I/W) - Z(b_t—pn b)"2

4.4 Model Selection Rationale

Model Pros Cons Footprint
Random Forest Interpretable, robust Larger size ~35 MB
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XGBoost
LR (baseline)

High accuracy, fast
Lightweight

~28 MB
~1-2 MB

Hyperparam tuning
Lower accuracy

4.5 Evaluation Metrics

Cache Hit Ratio (CHR) = hits / total_requests; Startup Latency (SL) = time from request to playback start; Rebuffer
Ratio (RR) = stall_time / total_play time; QoE (MOS) on 1-5 scale. We also report inference latency and prefetch
bandwidth overhead.
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Fig. 2. ML Model Training and Inference Flow

Fig. 2 Machine Learning Model Training and Inference Flow
V. EXPERIMENTAL SETUP
We emulated a CDN with 10 edge nodes and 1,000 concurrent users. Bandwidth ranges: 3G (0.5-2 Mbps), 4G (2-20
Mbps), 5G (10-150 Mbps). Jitter targets: 40/25/10 ms respectively. Training/validation/test splits: 35k/7.5k/7.5k
sessions. Implemented in Python 3.10 (scikit-learn 1.3, XGBoost 1.7) on AWS EC2 t3.xlarge (4 vCPU, 16 GB RAM).

5.1 Test Scenarios

Scenario Description Goal

Cold Start No history for new user Measure fallback policy
Burst Traffic Many concurrent starts Stress prefetch pipeline
Handover Cell transitions mid-stream Robustness to volatility

Long Session Extended binge watching Eviction under memory limits

5.2 Caching Decision Pseudocode

Algorithm 1: Predictive Prefetch Decision
Input: feature vector x_t, threshold 7, topN

Output: prefetch_list
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1: probs = model.predict_proba(x_t)

2: ranked = sort_descending(probs)

3: prefetch_list =[]

4: for item in ranked[0:topN]:

5:  if probs[item] >= t and resources_ok():
6: prefetch_list.append(item)

7: return prefetch_list

VI. RESULTS AND ANALYSIS

Metric LRU LFU Random Forest XGBoost
Cache Hit Ratio 59.2 63.5 78.4 79.1

(%)

Startup Latency 2.6 2.4 1.8 1.7

(s)

Rebuffer Ratio 3.4 2.9 1.8 1.7

(%)

QoE (MOS 1-5) 3.5 3.7 4.3 4.4

ML-based models increased CHR by ~24% and reduced SL by =31% relative to LRU/LFU. Bandwidth savings
averaged =17% via reduced origin fetches. Random Forest achieved 86.5% accuracy; XGBoost reached 88.1%. Both
maintained inference latency < 0.8 s, suitable for near real-time prefetching.

b
\_ Device )v\ / Y,
Streaming
Parameters

Fig. 3 Performance Comparison among Caching Algorithms
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Fig. 5 Mean Opinion Score (MOS) vs. Network Jitter
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6.1 Feature Importance
Feature importance indicated session duration, bandwidth variance, and genre similarity contributed ~68% of predictive
power; contextual time-of-day and device type contributed ~17%.

6.2 Statistical Significance
A one-way ANOVA across algorithms for CHR yielded p < 0.01, indicating statistically significant differences.
Pairwise t-tests (Bonferroni-corrected) confirmed improvements of XGBoost over LFU (p < 0.05).

VII. DISCUSSION

7.1 Operational Implications

Predictive caching front-loads network usage into idle windows and moves decisions closer to users. At scale, a +15-
20% CHR uplift produces meaningful CDN egress savings and reduces tail latency for cold objects. Edge inference
shortens control loops, enabling per-second plan revisions.

7.2 Cost and Capacity Impact

Let C_e be egress cost ($/GB), B_s the bytes saved by additional cache hits. Monthly savings S = C e x B_s. For 2
PB/month and net 17% fewer origin fetches, B_s = 340 TB; at $0.03/GB, S = $10.2k/month. These estimates help
prioritize markets.

Input Example Notes

Monthly traffic 2 PB OTT + live/VoD mix
CHR uplift 17% From ML vs. LFU/LRU
Egress price $0.03/GB Negotiated CDN rate
Savings ~$10.2k/mo Sensitivity +20%

7.3 Energy and Device Impact
On-device inference at ~0.7-0.8 s per decision adds <14% CPU for short bursts and is usually amortized during idle
periods. Buffer watermarks suspend prefetch when battery is low or radio conditions are constrained.

7.4 Privacy, Security, and Compliance

Deployments should minimize personal data; maintain pseudonymous identifiers and coarse context. Federated
learning with differential privacy reduces centralization of raw traces. Controls include data retention limits, region-
pinned training, and auditable model registries.

7.5 Failure Modes and Mitigations

Failure Mode Mitigation

Model drift (trend shifts) Rolling A/B retraining, drift monitors, fast rollback
Aggressive prefetch during congestion Raise T on low RSRP/RSRQ); backoff policy

Cold content flooding cache Top-N cap per user; genre-diversity guardrails
Edge overload Rate limits per PoP; circuit-breaker on inference
Data quality regressions Schema checks, null alarms, feature-store contracts

VII. PRACTICAL INTEGRATION IN OTT PIPELINES
8.1 Reference Integration Architecture
Rollout comprises: (i) thin client SDK for telemetry + cache hooks; (ii) edge worker functions for inference; (iii) model
registry and feature store; and (iv) observability dashboards for CHR/SL/RR/MOS.

8.2 Deployment Stages

Stage Scope Success Criteria

Canary 1-2 markets, 1-5% users No QOE regressions; >10% CHR uplift
Ramp 5-10 markets, 25% users Stable infra cost; <1% crash increase
Global All markets SLA upheld; automated rollback ready
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Optimization Model & thresholds T sweeps; edge fine-tuning
Steady-state Retraining cadence Weekly retrain; drift alerting

8.3 Observability and KPlIs
Track CHR (by network and device), Startup Latency, Rebuffer Ratio, MOS, Prefetch Waste %, Edge CPU/RAM, and
CDN egress. Slice dashboards by geography, app version, ABR profile, and ISP.

8.4 Rollout and Safety

Ship with feature flags; include kill-switch per region/PoP. Use A/B or interleaved assignment to reduce bias. Keep a
fallback heuristic (LFU) to ensure continuity during model downtime.

Guardrail: if (MOS_7d < MOS_baseline - 0.1) OR (RR_7d > RR_baseline + 0.3%), then
disable_predictive_caching(region)

IX. LIMITATIONS AND FUTURE WORK

9.1 Current Limitations
Cold-start users reduce initial accuracy; tail-content sparsity limits transition modeling; regional drift requires re-
tuning; device storage and radio variability bound prefetch windows.

9.2 Research Directions

1) Reinforcement learning for cost-aware prefetch and risk-sensitive thresholds.

2) Federated and split learning to keep raw data on device while sharing gradients.

3) Lightweight temporal-attention sequence models for long-range viewing dependencies.
4) Multi-objective optimization balancing CHR, MOS, and prefetch waste.

5) Causal inference to avoid spurious correlations in behavior signals.

9.3 Ablation and Sensitivity Studies

Study Change Observed Effect

Remove genre features — genre affinity CHR -3.1%

Tighten t 1:0.70 — 0.78 Prefetch waste —22%, SL +0.05
s

Increase top-N N:3 -5 CHR +1.2%, bandwidth +6%

Reduce cache 10 GB — 6 GB CHR —4.5%, MOS —0.08

X. CONCLUSION

We presented a deployable ML-based predictive caching framework for mobile streaming that anticipates user requests
and adapts to network variability. Across realistic simulations, Random Forest and XGBoost improved CHR by ~24%,
reduced startup latency by =31%, and lowered rebuffering by =47% over heuristic baselines. We detailed operational
impacts, privacy-preserving deployment patterns, and guardrails for safe rollout. Future work targets reinforcement
learning for cost-aware control, federated training at the edge, and lightweight sequence models to capture long-range
viewing patterns without compromising device resources.
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