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ABSTRACT: Mobile video streaming constitutes the majority of internet traffic on cellular networks, yet the 

unpredictable nature of wireless links continues to challenge seamless playback. Traditional caching strategies (e.g., 

Least Recently Used and Least Frequently Used) respond only to past access patterns and often fail under real-time 

variability such as handovers, jitter, and throughput swings. This paper presents a Machine Learning (ML)-based 

predictive caching framework that proactively prefetches video segments by forecasting viewer intent and network 

conditions. The approach combines behavioral and contextual features—watch sequences, genre affinity, session depth, 

network bandwidth variance—and applies Random Forest and XGBoost classifiers to rank likely next requests. 

Prefetching is executed when a confidence threshold is exceeded, constrained by device storage and instantaneous 

throughput. Simulated experiments across 3G/4G/5G models demonstrate a 24% increase in cache hit ratio, 31% 

reduction in startup latency, and 47% drop in rebuffering relative to heuristic caching. The contributions include (i) a 

modular architecture deployable at the edge or client; (ii) an analysis of model trade-offs (accuracy vs. inference 

latency); and (iii) a discussion of privacy and deployment considerations for real-world OTT pipelines. 
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I. INTRODUCTION 

 

The explosive growth of streaming media has redefined how digital content is consumed. Reports estimate that video 

accounts for more than 80% of mobile network data. Despite deployment of advanced CDN and edge infrastructures, 

the final leg—delivery to mobile devices over variable wireless links—remains the primary bottleneck to user 
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experience. Conventional caching schemes depend on deterministic heuristics that neither anticipate user intent nor 

account for network variability. An LRU cache may evict a soon-to-be-requested segment simply because it was 

accessed earlier, whereas a learning-based model could predict that behavior from temporal correlations. The 

emergence of ML techniques provides a pathway to model such correlations by analyzing playback logs, user behavior, 

and contextual signals (time of day, device type, network type). 

 

1.1 Background on Caching in Streaming Systems 

Caching reduces origin traffic and latency by serving data from nearer nodes. In OTT streaming, caching typically 

occurs at CDN edge, ISP-operated edge, and sometimes on-device. Mobile environments complicate heuristics due to 

time-varying radio conditions, mobility, and device constraints. 

 

1.2 Limitations of Heuristic Caching 

Heuristic policies such as LRU and LFU ignore temporal intent transitions. A user binge-watching episodes exhibits 

high probability of requesting the next episode—yet LRU might evict it. LFU overweights global popularity and 

ignores session context and instantaneous network state. 

 

1.3 Role of Machine Learning in Network Optimization 

ML enables modeling of multi-dimensional context: historical watch sequences, session time-of-day, network variance, 

and device capabilities. Supervised classifiers (Random Forest, XGBoost) and sequence models can predict the next 

content request, transforming caching from reactive to proactive optimization. 

 

1.4 Research Objectives 

This study aims to: (i) design a modular predictive caching framework for edge/client deployment; (ii) quantify 

accuracy and QoE gains relative to heuristic baselines; and (iii) examine inference latency, storage constraints, and 

privacy considerations. 

 

II. RELATED WORK 

 

Prior research on caching for video streaming spans rule-based heuristics, analytical models, and learning-based 

strategies. Classical approaches optimize hit ratio under stationarity assumptions. Recent works apply ML to predict 

popular objects, yet many target data-center or CDN layers rather than the mobile edge. Our work differs by focusing 

on session-level prediction and deployability in bandwidth-constrained edge or on-device settings, with explicit 

consideration of inference latency and prefetch waste. 

 

III. SYSTEM ARCHITECTURE 

 

3.1 Logical Architecture 

The architecture integrates four layers: Data Acquisition, Feature Engineering, Prediction Engine, and Cache Control. 

Telemetry flows from the mobile client to analytics; features are extracted; models score candidate segments for 

prefetch; and the cache controller honors resource thresholds. 

 

3.2 Component Functions 

(a) Data Acquisition: collects session logs (content ID, timestamps, bitrate, buffer level, network stats). (b) Feature 

Engineering: computes temporal, behavioral, and network features. (c) Prediction Engine: produces ranked 

probabilities of next segments. (d) Cache Control: executes prefetch/eviction decisions with high/low watermarks and 

bandwidth guards. 

 

3.3 Edge Deployment Considerations 

Edge deployment reduces round-trip latency and origin traffic. Models must be compact (< 40 MB) and efficient 

(inference < 0.8 s) to avoid competing with playback bandwidth. Prefetch occurs during idle windows to prevent 

contention. 
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Fig. 1 Predictive Caching Framework Architecture 

 

Component Description Example Size/Latency 

ML Model Random Forest (200 trees) 35 MB / 0.7 s inference 

Cache Buffer Prefetch Queue (top-N=3) 10 GB / dynamic thresholds 

Telemetry Playback & network stats ~1–2 kB/s per session 

Edge Node CDN PoP gateway Round-trip < 20 ms (typical) 

 

IV. METHODOLOGY 

 

4.1 Data Simulation Pipeline 

We synthesized 50,000 streaming sessions using a Poisson arrival process for users, log-normal throughput 

distributions for 3G/4G/5G, and session-length distributions reflecting observed OTT patterns. Each session includes 

20 × 5 s segments for a mix of live and on-demand content. 

 

4.2 Feature Engineering 

Temporal features: time since last view, hour-of-day; Behavioral: transition probabilities, genre affinity; Contextual: 

device type, network variance. Numeric features are min–max scaled to [0,1]; categorical features are one-hot encoded. 

 

4.3 Feature Formulas (examples) 

Genre affinity for user u and genre g:  G(u,g) = N_view(u,g) / N_view(u,·)   

Session depth: D = number of segments watched in current session   

Bandwidth variance over window W: Var(b) = (1/W) · Σ (b_t − μ_b)^2 

 

4.4 Model Selection Rationale 

 

Model Pros Cons Footprint 

Random Forest Interpretable, robust Larger size ~35 MB 
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XGBoost High accuracy, fast Hyperparam tuning ~28 MB 

LR (baseline) Lightweight Lower accuracy ~1–2 MB 

 

4.5 Evaluation Metrics 

Cache Hit Ratio (CHR) = hits / total_requests; Startup Latency (SL) = time from request to playback start; Rebuffer 

Ratio (RR) = stall_time / total_play_time; QoE (MOS) on 1–5 scale. We also report inference latency and prefetch 

bandwidth overhead. 

 

 
 

Fig. 2 Machine Learning Model Training and Inference Flow 

 

V. EXPERIMENTAL SETUP 

 

We emulated a CDN with 10 edge nodes and 1,000 concurrent users. Bandwidth ranges: 3G (0.5–2 Mbps), 4G (2–20 

Mbps), 5G (10–150 Mbps). Jitter targets: 40/25/10 ms respectively. Training/validation/test splits: 35k/7.5k/7.5k 

sessions. Implemented in Python 3.10 (scikit-learn 1.3, XGBoost 1.7) on AWS EC2 t3.xlarge (4 vCPU, 16 GB RAM). 

 

5.1 Test Scenarios 

 

Scenario Description Goal 

Cold Start No history for new user Measure fallback policy 

Burst Traffic Many concurrent starts Stress prefetch pipeline 

Handover Cell transitions mid-stream Robustness to volatility 

Long Session Extended binge watching Eviction under memory limits 

 

5.2 Caching Decision Pseudocode 

Algorithm 1: Predictive Prefetch Decision 

Input: feature_vector x_t, threshold τ, topN 

Output: prefetch_list 
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1: probs = model.predict_proba(x_t) 

2: ranked = sort_descending(probs) 

3: prefetch_list = [] 

4: for item in ranked[0:topN]: 

5:     if probs[item] >= τ and resources_ok(): 

6:         prefetch_list.append(item) 

7: return prefetch_list 

 

VI. RESULTS AND ANALYSIS 

 

Metric LRU LFU Random Forest XGBoost 

Cache Hit Ratio 

(%) 

59.2 63.5 78.4 79.1 

Startup Latency 

(s) 

2.6 2.4 1.8 1.7 

Rebuffer Ratio 

(%) 

3.4 2.9 1.8 1.7 

QoE (MOS 1–5) 3.5 3.7 4.3 4.4 

 

ML-based models increased CHR by ≈24% and reduced SL by ≈31% relative to LRU/LFU. Bandwidth savings 

averaged ≈17% via reduced origin fetches. Random Forest achieved 86.5% accuracy; XGBoost reached 88.1%. Both 

maintained inference latency < 0.8 s, suitable for near real-time prefetching. 

 

 
 

Fig. 3 Performance Comparison among Caching Algorithms 
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Fig. 4 Cache Hit Ratio vs. Cache Size 

 

 
 

Fig. 5 Mean Opinion Score (MOS) vs. Network Jitter 
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6.1 Feature Importance 

Feature importance indicated session duration, bandwidth variance, and genre similarity contributed ~68% of predictive 

power; contextual time-of-day and device type contributed ~17%. 

 

6.2 Statistical Significance 

A one-way ANOVA across algorithms for CHR yielded p < 0.01, indicating statistically significant differences. 

Pairwise t-tests (Bonferroni-corrected) confirmed improvements of XGBoost over LFU (p < 0.05). 

 

VII. DISCUSSION 

 

7.1 Operational Implications 

Predictive caching front-loads network usage into idle windows and moves decisions closer to users. At scale, a +15–

20% CHR uplift produces meaningful CDN egress savings and reduces tail latency for cold objects. Edge inference 

shortens control loops, enabling per-second plan revisions. 

 

7.2 Cost and Capacity Impact 

Let C_e be egress cost ($/GB), B_s the bytes saved by additional cache hits. Monthly savings S ≈ C_e × B_s. For 2 

PB/month and net 17% fewer origin fetches, B_s ≈ 340 TB; at $0.03/GB, S ≈ $10.2k/month. These estimates help 

prioritize markets. 

 

Input Example Notes 

Monthly traffic 2 PB OTT + live/VoD mix 

CHR uplift 17% From ML vs. LFU/LRU 

Egress price $0.03/GB Negotiated CDN rate 

Savings ~$10.2k/mo Sensitivity ±20% 

 

7.3 Energy and Device Impact 

On-device inference at ~0.7–0.8 s per decision adds <14% CPU for short bursts and is usually amortized during idle 

periods. Buffer watermarks suspend prefetch when battery is low or radio conditions are constrained. 

 

7.4 Privacy, Security, and Compliance 

Deployments should minimize personal data; maintain pseudonymous identifiers and coarse context. Federated 

learning with differential privacy reduces centralization of raw traces. Controls include data retention limits, region-

pinned training, and auditable model registries. 

 

7.5 Failure Modes and Mitigations 

 

Failure Mode Mitigation 

Model drift (trend shifts) Rolling A/B retraining, drift monitors, fast rollback 

Aggressive prefetch during congestion Raise τ on low RSRP/RSRQ; backoff policy 

Cold content flooding cache Top-N cap per user; genre-diversity guardrails 

Edge overload Rate limits per PoP; circuit-breaker on inference 

Data quality regressions Schema checks, null alarms, feature-store contracts 

 

VIII. PRACTICAL INTEGRATION IN OTT PIPELINES 

 

8.1 Reference Integration Architecture 

Rollout comprises: (i) thin client SDK for telemetry + cache hooks; (ii) edge worker functions for inference; (iii) model 

registry and feature store; and (iv) observability dashboards for CHR/SL/RR/MOS. 

 

8.2 Deployment Stages 

 

Stage Scope Success Criteria 

Canary 1–2 markets, 1–5% users No QoE regressions; ≥10% CHR uplift 

Ramp 5–10 markets, 25% users Stable infra cost; <1% crash increase 

Global All markets SLA upheld; automated rollback ready 
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Optimization Model & thresholds τ sweeps; edge fine-tuning 

Steady-state Retraining cadence Weekly retrain; drift alerting 

 

8.3 Observability and KPIs 

Track CHR (by network and device), Startup Latency, Rebuffer Ratio, MOS, Prefetch Waste %, Edge CPU/RAM, and 

CDN egress. Slice dashboards by geography, app version, ABR profile, and ISP. 

 

8.4 Rollout and Safety 

Ship with feature flags; include kill-switch per region/PoP. Use A/B or interleaved assignment to reduce bias. Keep a 

fallback heuristic (LFU) to ensure continuity during model downtime. 

Guardrail: if (MOS_7d < MOS_baseline - 0.1) OR (RR_7d > RR_baseline + 0.3%), then 

disable_predictive_caching(region) 

 

IX. LIMITATIONS AND FUTURE WORK 

 

9.1 Current Limitations 

Cold-start users reduce initial accuracy; tail-content sparsity limits transition modeling; regional drift requires re-

tuning; device storage and radio variability bound prefetch windows. 

 

9.2 Research Directions 

1) Reinforcement learning for cost-aware prefetch and risk-sensitive thresholds. 

2) Federated and split learning to keep raw data on device while sharing gradients. 

3) Lightweight temporal-attention sequence models for long-range viewing dependencies. 

4) Multi-objective optimization balancing CHR, MOS, and prefetch waste. 

5) Causal inference to avoid spurious correlations in behavior signals. 

 

9.3 Ablation and Sensitivity Studies 

 

Study Change Observed Effect 

Remove genre features − genre affinity CHR −3.1% 

Tighten τ τ: 0.70 → 0.78 Prefetch waste −22%, SL +0.05 

s 

Increase top-N N: 3 → 5 CHR +1.2%, bandwidth +6% 

Reduce cache 10 GB → 6 GB CHR −4.5%, MOS −0.08 

 

X. CONCLUSION 

 

We presented a deployable ML-based predictive caching framework for mobile streaming that anticipates user requests 

and adapts to network variability. Across realistic simulations, Random Forest and XGBoost improved CHR by ≈24%, 

reduced startup latency by ≈31%, and lowered rebuffering by ≈47% over heuristic baselines. We detailed operational 

impacts, privacy-preserving deployment patterns, and guardrails for safe rollout. Future work targets reinforcement 

learning for cost-aware control, federated training at the edge, and lightweight sequence models to capture long-range 

viewing patterns without compromising device resources. 
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