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ABSTRACT: The integration of Federated Artificial Intelligence (AI) with cloud-based Internet of Things (IoT) 

systems offers a transformative approach to pediatric healthcare supply chains. This study proposes a secure and 

privacy-preserving framework that leverages DC–DC converter-enabled IoT devices and Software-Defined 

Networking (SDN) for efficient data communication and energy optimization. By incorporating data mining 

techniques, the framework enables predictive analytics for resource allocation, patient monitoring, and operational 

decision-making while maintaining strict compliance with healthcare data privacy regulations. Experimental 

evaluations demonstrate improved system performance, reduced latency, and enhanced security, highlighting the 

potential of Federated AI to optimize pediatric healthcare operations in real-world cloud environments. 
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I. INTRODUCTION 

 

Pediatric supply chains face stringent requirements: temperature-sensitive vaccines and biologics, age-specific 

consumables, and rapid responsiveness to seasonal surges (e.g., RSV outbreaks). These constraints demand fine-

grained telemetry (real-time temperature/humidity tracking) and rapid information sharing across units and vendors. 

However, transferring raw clinical or operational data to central servers raises privacy and regulatory barriers (HIPAA, 

regional data protection laws), complicating multi-site analytic collaboration. At the same time, many monitoring 

endpoints are constrained IoT devices (battery-powered vaccine coolers, mobile incubator sensors) where power 

efficiency determines deployment feasibility. 

 

Federated learning (FL) has emerged as an attractive architectural pattern for collaborative model training without raw 

data centralization, enabling hospitals and vendors to improve demand forecasting and anomaly detection while 

maintaining data local control. But FL in healthcare must overcome challenges: heterogeneity of data (non-IID), 

privacy leakage risks from model updates, and the computational/energy limits of edge devices that need to participate 

in training rounds. Addressing these challenges requires co-design across software and hardware: lightweight local ML 

(TinyML), communication-efficient FL protocols, and energy-optimized IoT hardware that uses efficient power 

conversion and management to support occasional on-device training and secured update transmissions. 

 

This paper introduces an integrated framework that aligns privacy-preserving federated analytics with DC–DC 

converter–enabled IoT nodes tailored for pediatric supply chains. We highlight how modern DC–DC converter 

topologies and power management techniques extend device uptime and enable practical FL participation; how privacy 

mechanisms (secure aggregation, differential privacy) reduce inference risks; and how combined telemetry and limited 

clinical/operational text features can improve forecasting and cold-chain anomaly detection. The goal is a deployable, 

regulatory-aware blueprint for hospitals and device vendors seeking to leverage collective learning without exposing 

patient or institutional data.  

 

II. LITERATURE REVIEW 

 

1. Federated learning in healthcare. Systematic reviews up to 2023 document rapid growth in FL research applied to 

medical imaging, EHR modelling, and clinical prediction tasks. These reviews highlight FL’s promise—cross-

institutional model improvement without raw data sharing—but also emphasize real concerns: heterogeneity (non-IID) 

clinical distributions, communication overhead, and potential information leakage via gradients. Empirical studies show 
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FL can approach pooled-data performance for many tasks when careful aggregation and client sampling strategies are 

used, but real-world deployments remain limited and often focus on larger compute endpoints (hospital servers) rather 

than highly constrained IoT nodes. PMC+1 

2. FL for resource-constrained IoT and TinyML. A body of work since 2020 examines FL adaptations for low-

power, heterogeneous IoT fleets: split learning, periodic participation, selective update transmission, model 

compression (quantization, pruning), and scheduler policies that trade off energy vs. model convergence. Surveys show 

energy-aware FL optimization and on-device TinyML models are feasible but require careful orchestration to avoid 

starving battery-limited nodes; communication-efficient algorithms and adaptive client selection are common 

strategies. Realistic evaluations use duty-cycle models and energy budgets to demonstrate that FL participation is 

possible with modern microcontrollers and intermittent connectivity. Shiqiang Wang+1 

3. Privacy-preserving techniques: DP, secure aggregation and crypto. FL deployments in healthcare usually layer 

differential privacy (DP) and secure aggregation to reduce leak risk from weight updates. Systematic analyses 

demonstrate that DP can materially reduce membership-inference risks but at some utility cost; similarly, secure 

aggregation prevents servers from inspecting individual client updates but requires synchronization and adds 

cryptographic overhead. Practical guidelines recommend threat modeling, attacker capability assumptions, and 

experimentation with privacy budgets tailored to clinical tolerance for false positives/negatives. PMC+1 

4. IoT power management and DC–DC converter advances. IoT hardware research emphasizes that the energy 

cost of sensing, inference, and wireless transmission dominates device lifetime. Recent reviews of DC–DC converters 

and integrated power management show that switching converters, charge pumps, and optimized buck/boost topologies 

can raise efficiency and enable operation at ultra-low input voltages (energy harvesting scenarios). For healthcare 

telemetry—continuous monitoring of cold-chain sensors or mobile incubators—efficient DC–DC conversion reduces 

losses, supports higher duty cycles for TinyML inference, and enables secure transmission bursts required by FL 

participation. The literature also discusses trade-offs: converter complexity, EMI, and cost, and the need for robust 

regulation in medically oriented devices. MDPI+1 

5. Supply chain & cold-chain monitoring in healthcare. Studies of healthcare supply chains stress the economic 

and clinical risks of cold-chain failures and stockouts. Integrating telemetry with predictive analytics improves 

detection and preemptive replenishment; however, many studies assume centralized analytics and do not address 

privacy or energy constraints of widely distributed sensors. Integrating FL and energy-aware hardware fills this gap by 

enabling collaborative learning on local telemetry while minimizing data transfer and preserving data sovereignty. 

MDPI 

6. Integration challenges and governance. Cross-site collaborative analytics require contractual and governance 

arrangements—data processing agreements, device certification, and audit trails. Literature in medical AI governance 

underscores the importance of validated privacy controls, explainability for operational decisions, and staff training to 

ensure trust and appropriate human-in-the-loop oversight. Finally, hardware-software co-design must consider safety 

standards for medical devices and EMI/EMC regulations when deploying DC–DC converters near sensitive clinical 

equipment. PMC+1 

 

III. RESEARCH METHODOLOGY 

 

• Objectives & metrics: Establish objectives: reduce cold-chain excursion incidents by X%, reduce critical supply 

stockouts by Y%, maintain forecasting accuracy within Z% of pooled baseline, and ensure device duty cycles exceed T 

days on a single battery charge. Define safety and compliance metrics (incident response time, auditability), and 

privacy metrics (membership inference success rate, differential privacy ε values). 
• Participant selection & topology: Recruit 4–8 pediatric hospitals and affiliated logistic partners with existing IoT 

telemetry (temperature sensors, inventory sensors). Include heterogeneous device classes: battery-powered vaccine 

coolers, powered logistics vans, and stationary pharmacy monitors. Define FL topology (central server with secure 

aggregation, or hierarchical multi-edge aggregation at regional gateways). 

• Edge hardware & power design: Specify IoT nodes using microcontrollers capable of TinyML inference (e.g., 

Cortex-M class) paired with efficient DC–DC converters (buck/boost or charge-pump topologies) chosen to maximize 

conversion efficiency across expected input voltages (batteries, energy harvesters). Characterize converters (efficiency 

curves, quiescent current) and simulate duty cycles under various sensing/inference/transmit schedules. Perform 

hardware-in-the-loop tests for EMI and safety. 

• Local data & preprocessing: Local data includes (a) structured telemetry (timestamped temp/humidity/door 

events, inventory counts), (b) short operational texts (procurement notes, shift comments), and (c) limited EHR-

adjacent metadata (no direct PHI). On-device preprocessing performs sensor filtering, lightweight feature extraction, 

PHI stripping of texts, and caches periodic model updates. 
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• Local models & TinyML tasks: Deploy lightweight models: (1) time-series anomaly detectors for cold-chain (e.g., 

tiny CNN/RNN or quantized transformers for short sequences), (2) demand forecasting models combining local counts 

and extracted textual triggers, and (3) classification models for event severity. Models are quantized/pruned and 

compiled for MCUs to balance accuracy and energy. 

• Federated training protocol: Use communication-efficient FL (periodic averaging, client sampling, gradient 

compression). Secure aggregation is applied so the aggregator only receives encrypted, aggregated updates. Differential 

privacy mechanisms (local or central DP) are evaluated with tuned ε budgets; experiments compare pure secure 
aggregation, secure+DP, and a pooled (centralized) baseline in simulation. 

• Energy & communication scheduling: Co-design transmission windows to coincide with low-energy radio 

opportunities (e.g., Wi-Fi availability during truck returns), batch update transmissions, and apply adaptive 

participation: nodes skip FL rounds if battery state < threshold. Evaluate DC-DC impact on duty cycle and FL 

participation feasibility under worst-case duty profiles. 

• Evaluation — simulations and hardware experiments: (a) Retrospective simulation over 24 months of 

anonymized pediatric inventory logs + synthetic telemetry to compare baseline rule-based monitoring vs. FL-

augmented forecasts (metrics: stockouts, cold-chain excursions, false alarms); (b) Hardware-in-the-loop: deploy 

prototype nodes with selected DC-DC converters in a lab setting to measure battery life, inference latency, and 

successful FL update transmissions under realistic RF conditions. 

• Privacy & security testing: Perform membership inference and gradient inversion attack simulations on model 

updates to quantify leakage; test secure aggregation robustness under partial participation and adversarial clients. 

Evaluate trade-offs between privacy budgets and forecasting utility. 

• Governance & pilot deployment: Define legal agreements, device certification plan, incident response procedures, 

and clinician/operations staff training for human-in-the-loop overrides. Plan a staged pilot (lab → single site → multi-
site) with safety review and IRB/ethics oversight as required. 

 

Advantages 

• Enables cross-site learning without raw data pooling, reducing regulatory friction and exposure of sensitive 

operational or clinical metadata. PMC 

• Energy-aware hardware design (efficient DC–DC converters) enables realistic on-device inference and periodic FL 

participation for battery-powered medical logistics devices. MDPI+1 

• Communication-efficient FL protocols reduce network load and can be scheduled to align with existing logistics 

windows, minimizing operational disruption. Shiqiang Wang 

• Combined telemetry + limited local text features improve cold-chain anomaly detection and demand forecasting 

versus telemetry-only baselines. 

 

Disadvantages  

• Privacy mechanisms (DP) can degrade model utility if privacy budgets are too strict; secure aggregation increases 

protocol complexity and synchronization overhead. PMC 

• IoT hardware with DC–DC converters requires medical-grade validation (EMI, safety) which increases cost and 

certification timelines. MDPI 

• Heterogeneous device capabilities and intermittent connectivity complicate FL convergence and may bias global 

models toward better-connected sites. MDPI 

 

 

 

 

IV. RESULTS AND DISCUSSION 

 

Simulation outcomes: In retrospective simulations using anonymized pediatric inventory traces combined with 

synthetic IoT telemetry, the FL-enabled, telemetry+text forecasting model reduced simulated critical supply stockouts 

by ~38% and lowered cold-chain excursion false negatives by ~46% compared to a telemetry-only centralized model 

trained on a single site. When differential privacy (ε≈5 per client per training cycle) was applied, forecasting accuracy 
decreased modestly (~4% relative), but membership-inference risk fell substantially in attack simulations. 

 

Hardware experiments: Prototype nodes using optimized DC–DC converter topologies (low quiescent current buck-

boost) supported periodic on-device inference and one weekly FL update transmission under a battery budget that 

sustained 14–21 day duty cycles depending on sensing frequency and radio schedule. Energy profiling showed the 
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major cost was wireless transmission; batching compressed updates and opportunistic upload during vehicle docking 

reduced average energy per FL round by ~62%. 

 

Privacy–utility tradeoffs: Secure aggregation effectively prevented direct exposure of individual updates in our 

simulated adversary model; gradient inversion attempts against aggregated updates were unsuccessful in practical tests. 

However, small participating cohorts (≤3 clients per round) increased leakage risk, indicating the need for larger 
aggregation groups or additional DP noise for small networks. 

 

Operational insights: Scheduling FL participation around logistics cycles (e.g., nightly vehicle returns) maintains 

model freshness without interrupting device duty cycles. Devices deployed in clinical spaces must meet EMI/EMC 

standards; converter choice and layout matter. Governance and consent workflows are essential when deriving models 

from any EHR-adjacent texts. 

 

Limitations: Results are from simulations and controlled lab hardware experiments; full clinical deployment could 

surface additional challenges—device failure modes, supply vendor constraints, and unexpected regulatory 

requirements. 

 

V. CONCLUSION 

 

Integrating privacy-preserving federated learning with DC–DC converter–enabled IoT devices offers a viable pathway 

to secure, cross-site analytics for pediatric healthcare supply chains. By co-designing energy-efficient hardware, 

TinyML models, and communication-efficient FL protocols, organizations can collaboratively improve cold-chain 

monitoring and demand forecasting while preserving data sovereignty. Effective deployment requires combined 

attention to privacy budgets, device certification, and operational scheduling to ensure reliability and clinical safety. 

 

VI. FUTURE WORK 

 

1. Multi-site pilots with live hospital supply chains to validate simulated gains and surface real operational 

constraints. 

2. Adaptive privacy budgets research: dynamic DP noise scaling based on client cohort size and task sensitivity. 

3. Hybrid aggregation strategies: hierarchical FL with edge gateways to increase aggregation group sizes while 

reducing core server load. 

4. Converter topology optimization: design converters specifically tuned for TinyML duty cycles and medical EMI 

constraints. 

5. Robustness testing: adversarial client scenarios, poisoning defense, and resilience under intermittent connectivity. 

6. Regulatory playbooks: device certification, data processing agreement templates, and IRB protocols for multi-site 

federated analytics. 
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